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VALIDATION / EVALUATION 
OF A MODEL
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Validation or evaluation?

• Treat model as a scientific hypothesis
– Hypothesis: does the model imitate the way the real

world functions?

– We want to validate or invalidate hypothesis -
validation

• Treat model as engineering tool
– The question is how good the tool is

– We want to evaluate the quality of the model
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The model as a scientific hypothesis
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• Does the model behave in  the same way as 
the real world for a set of conditions C.
– “behaves like”: Each process gives results 

similar to  measurements (within experimental 
error)

M 
behaves like R 

for C

hypothesis
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M equivalent 
to R
for C

We are 
in C

M gives
same results

as R

IF AND THEN

• If the hypothesis is correct, then model 
predictions and observations will be the same  

Real 
world

OutputsInputs 

Model OutputsInputs
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M does NOT 
give same 

results as R

We are 
in C

M NOT 
equivalent 
to R for C

AND THEN

M gives 
same results 

as R

We are 
in C

M equivalent
To R 
for C

IF AND THEN

IF

• What can we deduce from this syllogism?
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• We can invalidate a model

• We cannot validate a model 
– The model may be right for the wrong reasons

• e. g. even  if  aphid densities are correct, models of 
individual processes may e wrong

Real 
world

OutputsInputs

Model OutputsInputs
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• Logically, we can’t validate a model

• In any case, we know that all models are 
false
– A model is a simplification of reality

• e.g. aphid-ladybeetle model is extreme 
simplification, ignores other populations, plant 
growth, etc. etc. etc. 

– It is not meant to be exactly the same as reality 
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So a model as theory is useless?

• NO
– Show that unlikely hypotheses are possible

– Show that accepted hypotheses are wrong

– Compare alternative hypotheses
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Example of comparison of 
hypotheses

• Respiration of wheat during grain filling. 
Does the C for respiration come directly 
from photosynthesis, or from reserves?
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• Hypothesis 1 : C for respiration comes from
photosynthesis if possible. 

photosynthesis

Grain fill

reserves

respiration
1

2

3
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• Hypothesis 2: C for respiration comes from
reserves

photosynthesis

grain fill

reserves respiration

1

2
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• Do experiments using pulses of14C marked
air. Measure14C concentrations in grain and
reserves. 

• Develop 2 models, corresponding to above
2 hypotheses. Models predict14C 
concentrations in grain and reserves. 

• Model based on hypothesis 1 is more 
consistent with data. 
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photosynthesis

Grain fill

reserves respiration

1

2

photosynthesis

Grain fill

reserves

respiration
1

2

3
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• Hypothesis 1 is more apt to reproduce observed
results.

• We don’t accept it as exactly true, but as better
working hypothesis
– So this is like engineering model?

– Yes and no. 
• Yes because we look at how well model reproduces results.

• No because we have drawn conclusions about mechanisms. 

Conclusions?
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Engineering model
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Evaluation

• We don’t treat the model as a hypothesis
but as a tool. 

• We want it to reproduce important aspects 
of reality (e. g. predict yield, predict
response to fetilizer)

• How well does model do that? That’s what
we evaluate. 
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The role of evaluation

• At the start of a modelling project
– Define objectives and therefore evaluation

criteria

• During the project
– To choose between alternatives, evaluate each
– Evaluation may give indication of how to 

improve model

• At the end of the project (or of a cycle)
– Evaluation provides measure of quality of

model
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The practice of evaluation

• Compare model to data, measure model quality

• Estimate how well model will predict for new 
cases

• Evaluation applies to all models. Both simple 
linear models and complex dynamic system 
models.
– So we can use simple linear models to illustrate

– We will point out specific aspects of dynamic system 
models
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Examples of data and models

• Dynamic system models. 
– We have seen several examples

– Dynamic system model for corn. Model is used to 
compare different irrigation strategies. We don’t 
present model, just measured and calculated values.

• Static models
– Predicting yield in a Polish region. To show that same 

problems arise for static and dynamic models.

– An invented example, used to illustrate methods. 
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Spring wheat yield in the Zachodnie Pomorze 
Province 1970-1998.
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Rainfall and mean air temperature from March 11 to August 20 in the 
Zachodnie Pomorze Province 1970-1998.
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Relationship between spring wheat yield (t.ha-1) in the Zachodnie Pomorze
Province and weather components 1970-1998

Regression equations R2

Till April 30

y = 1.40129 + 0.2396x1 - 0.0448x2+ 0.130222x3- 0.002306x4 67.84

Till May 31

y = 2.25358 + 0,2837x1 - 0.01490x2 + 0.15782x3 - 0.01039x5 - 0.020279x6
79.31

Till June 30

y = 3.77033 + 0.2557x1-0.01218x2+ 0.13753x3- 0.01265x5- 0.0235x7-0,00273x8
88.85

Till July 31

y = 3.61260 + 0.02643x1-0.01126x2+0.13129x3-0.01291x5-0.02982x7 + 0.03687x9-
0.00215x10 + 0.03107x11 90.5
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Artificial data and model
• Invent formula for generating data. This is « real

world ». Generate sample of 8 data values. Those
are « measurements ».

• Model has same form (linear model with 5 
explanatory variables)

• Use data to estimate model parameters
• Estimate 0,2,3,4, or 6 parameters. Others have 

default values that are different than true values.

1 1 1 2 2 3 3 4 4 5 5Y x x x x xθ θ θ θ θ θ ε= + + + + + +

1 1 1 2 2 3 3 4 4 5 5
ˆ ˆ ˆ ˆ ˆ ˆŶ x x x x xθ θ θ θ θ θ= + + + + +
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Data for artificial example

x(1) x(2) x(3) x(4) x(5) Y Ŷ  

-1.6339 0.7977 0.4416 -0.4463 -0.4728 -9.3896 -9.3144 

-0.9485 1.0700 0.5047 0.5308 -0.3257 -3.2312 -3.0994 

-0.2512 0.1952 0.5099 0.8226  0.4495 0.3732 0.7236 

0.3789 1.0193 -0.2185 0.8163 -1.9263 7.1024 6.1808 

0.1464 1.1373 1.0657 1.6325 -0.5528 5.8245 5.4485 

-1.1984 -1.7925 0.3530 -0.2601 0.2617 -11.2130 -11.8425 

-0.9720 -0.1533 0.1113 1.1251 0.1019 -5.8110 -5.9035 

0.3931 -1.2031 2.0132 -0.7947 -1.4396 2.8158 0.4690 

 

)5()5()4()4()3()3()2()2()1()1()0( *ˆ*ˆ*ˆ*ˆ*ˆˆ)ˆ;( xxxxxXf θθθθθθθ +++++=
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Graphs
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Artificial model

Residuals (observed – calculated) 
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Corn model. Residuals
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Corn model. Observed vs calculated
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Measures of error

• Summarize information about differences
between measured and calculated values
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MSE

• Mean Squared Error (the most common measure)
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RMSE and MAE
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R squared

• R² if model is perfect? 
– R²=1
– Can R² be > 1? 
– No.

• R² if model is just average of observed values? 
– R²=0
– Can R² be less than 0? 
– Yes, for complex models

• This criterion also called efficiency
• For yield example, R²=0.98

2
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R²=1  Yi=Ŷi

R²=0 Yi=Ŷi

Calculated vs. 
observed Residuals

R² and graphs
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Components of model error

• To better understand origin of error

• May give ideas of how to improve model
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Components of MSE

MSE=bias² + variability difference + remainder
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ˆ( )²
bias²

Y Y
i i
N

−
=
∑

Small bias Large bias

Bias term
residuals

• If bias is large
– Left out or underestimated a factor that systematically

increases or decreases response
– For example, underestimated harvest index (relation of

yield to total biomass)
– In example, bias²=0.23 (MSE=0.88)
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Variability difference

ˆvariability difference ( )²Y Y
σ σ= −

small large

Calculated vs observed values

• If SDSD is large
– Left out or underestimated a factor that sometimes

increases or decresaes response
– For example, effect of water stress
– In example variability difference = 0.06 (MSE=0.88)
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Remainder

ˆremainder 2 (1 correlation coefficient)Y Y
σ σ= −

Calculated vs observed values

small large

• If LCS is large
– Sorry, error is in details of model
– In example, remainder=0.59 (MSE=0.88)
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Criteria for model comparison

• Can we use criteria we have seen? 
– Graphs, MSE, R²
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MSE and R²

• What will be effect of adding extra 
variables to model, and estimating their 
parameters, on MSE and R²?
– MSE will decrease, R² will increase

– Because adding extra terms allows better fit

– MSE=0.16 (was 0.21)

– R²=0.56 (was 0.45)
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• Should we add extra variables in this case?
• Should we always add extra variables?

– Is a more complex model always better than a simpler 
model?

– Should we always put all our knowledge of the system 
into a model?

• The answer is no. Next we explain why. 
– Note that this implies that MSE and R² are not good for 

comparing models of different complexity.
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Summary to here

• Common methods of evaluation
– Graphs

– MSE, R²

• Decomposition of MSE can give indication 
of source of errors

• MSE and R² are not suited for comparing 
models of different complexity
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EVALUATING PREDICTIONS
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• Often, the goal is to predict for different situations
– Could be future (prediction) or could be past (unobserved

situations)
– So we need to compare prediction errors of models. That is topic

of this section. 
– (In other cases, we are interested in using a model to make

decisions. In that case, we need to compare the qualityof
decisions based on different models. That is another lecture). 

• In this case we are not really interested in MSE or R²per
se.
– We have data, don’t need model for those situations
– We would be interested in MSE if it gave information about 

predictions. Does it?
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• First, define prediction quality
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Prediction for what situations?

• Define target population = situations where
we want to use model.
– For model of animal metabolism rate, random

selection of animals (of given race, age).  

– Corn yield in southwestern France. Random
fields in region, random climate for region,  
certain management practices
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Prediction of what variables?

• Prediction quality depends on what we
predict. Define target variables. 
– e. g. Aphid-ladybeetle model may have 

different error for prey population in margins, 
aphid population in wheat, ladybeetle
population, total predation, etc. 
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A criterion of prediction error

–A common measure of prediction
error is MSEP=mean squared error
of prediction.

–Expectation over target population. 
Y is target variable. 

( ) 2ˆMSEP E Y Y = −
  

Ŷ
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The difference MSE, MSEP

• MSE is adjustment error (based on measurements)

• MSEP is prediction error (for full target population)

target population

measurements
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• The difference between MSE and MSEP is 
very important.
– Conceptually.

– Practically. MSE and MSEP can be very 
different.
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Estimate value of MSEP

• MSEP measures average squared error over 
target population. At best, we only have 
measurements for a sample. 

• How can we measure MSEP?
– We can’t

• How can we estimate MSEP? 
– Based on measurements (no other choice)
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• MSEP looks like MSE (a sum of squared 
errors). 

• Is MSE a good estimator of MSEP? 
– We have a sample of measurements. On the 

average over possible samples, is MSE=MSEP?
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MSE estimates MSEP if…

• Our measurements are representative of the target
population

• The measurements weren’t used to develop the model 
• Often, measurements used to estimate parameter values
• But could also be used to choose form of function etc. 
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Representative sample

• If data are not representative of target 
population, of course MSE is not a good 
measure of MSEP
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• Insure by random sampling
– For complex systems, random sampling may 

not be possible. 
• e.g. agronomy experiments at field stations, not 

farmer fields. 

– With many explanatory variables, even random 
sample may not be representative

• e.g. climate. With only a few years sampled, hard to 
say if this is representative sample.  
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If sample from target population 
unavailable

• Can estimate error in each part off model, 
and use model to get overall error
– In particular, parameter error

– If we know possible distribution of parameter
values, run model to get distribution of 
responses

• See uncertainty analysis, Bayesian estimation
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If measurements used to develop
model?

• Typically, use measurements to estimate
model parameters. 

• Then model fits measurements better than
new data

• So MSE isn’t a good measure of MSEP
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Adjusted parameters )ˆ(θMSE  )ˆ(θMSEP  

)1()0( ,θθ  4.6077 4.30 

)2()1()0( ,, θθθ  0.0143 0.07 

)3()2()1()0( ,,, θθθθ  0.0119 0.06 

)4()3()2()1()0( ,,,, θθθθθ  0.0040 0.10 

)5()4()3()2()1()0( ,,,,, θθθθθθ  0.0003 0.42 

 

Example. MSEP ≠MSE
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Conclusions about MSE and 
MSEP

MSEP≠MSE
For large p/n, MSEP>>MSE
MSE always decreases as model 
complexity increases
MSEP has a minimum for some
number of parameters
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How can we estimate MSEP if data 
is used in model development?

• This is important practical question

• We need estimate of error
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Data splitting
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All data

Part of data to 
estimate parameters 

Apply model to rest of 
data. Can we use fit to 

estimate MSEP?

same model
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• Yes, use MSE for second part of data to 
estimate MSEP (if data are from target 
distribution)

• Second part of data wasn’t used to estimate 
parameters

Data used to 
estimate parameters 

Data used to estimate 
MSEP
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Data used to 
estimate parameters 

Data used to estimate 
MSEP

• What are disadvantages of data splitting?
– Arbitrary division of data into two parts

– Use only part of data to estimate parameters

– Use only part of data to estimate MSEP
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Other strategy

• Use all data to estimate parameters, then 
data splitting to estimate MSEP
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Proposed parameters based on all data

Estimate of MSEP based on data splitting 
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• What do you think of that?
• We want two things: parameter estimates 

for model and estimate of MSEP. 
• This way, get best parameter estimates (use 

all data)
• And MSEP is correctly estimated.

– The only problem is that MSEP refers to model 
based on half the data.  

– This probably overestimates MSEP for model 
based on all data.
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Other strategy
• As above, but do data splitting twice. Then use 

average MSEP. 

Model based on these 
data

Model based on these 
data

Estimate MSEP using  
these data

Estimate MSEP using  
these data
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• What do you think of that?

• Less arbitrary 
– But split into two groups is still arbitrary

• Use all data to estimate MSEP

• But model for calculating MSEP isn’t 
model that is proposed.

• Could we do better?  
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Cross validation

• Similar to above ideas. 
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Develop model using only green data. Estimate MSEP 
using red data. (Estimate is squared error)

For N data values, repeat N times. Final estimate of 
MSEP is average of N MSEP estimates. 
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Y1  Y2  Y3  ……. YN                Y1-f-1(U1)

Y1  Y2  Y3  ……. YN                Y2-f-2(U2)

Y1  Y2  Y3  ……. YN               YN-f-N(UN)

$ / ( )MSEP n Y f Ui i i= − −∑1
2

Calculation with cross validation
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• What do you think of that?

• Proposed model based on all data.

• Evaluation based on model that uses all data 
but 1. So should be close to proposed
model.
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Decompose MSEP



77

• MSEP can be written as the sum of two
terms

• To help understand what determines
predictive quality
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Y

X

First term

• Model has some explanatory variables

• They do not explain all the variability in Y
– e.g. Temp, geometry, initial values don’t 

explain all aphid-ladybeetle dynamics

• What is relation between unexplained 
variability and  MSEP?



79

• For each value of explanatory variables X, 
model has unique prediction. Can’t be exact 
for all 

• What is best possible model?

Y

X
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• Best possible model (smallest MSEP) equals 
average at each X. 

• Remaining error is average variance for fixed X. 

Y

X

 { var( | )²}E Y X
X
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• Average variance for fixed X is lower limit 
for MSEP. Just depends on choice of 
explanatory variables.

• What is effect of adding more explanatory 
variables (more detailed model)?
– Adding explanatory variables always reduces 

average variance for fixed X. 
– But some explanatory variables are important, 

others less important or irrelevent.

• What is second term in MSEP? 
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Second contribution to MSEP

ˆ { [ ( | ) - ( )]²}E E Y X Y X
X Y

Y

X

• Actual model will not be best model
– Equations not exactly “correct”.

– Parameters not exactly “correct”.

• Second term, model error for fixed X, 
measures difference between actual model 
and best model . 

error
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• What is effect of extra detail (more 
variables in X or more equations) on second 
term?
– This leads to more parameters. Each must be 

estimated. In general, more overall error.  
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• Overall effect of adding more variables in 
X?
– Reduces average variance for fixed X. 

– But in general increases model error for fixed X

MSEP

Number of variables in X
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• What is good strategy?
– Add important variables, that reduces average 

variance for fixed X a lot.
– Don’t add unimportant variables.
– Appropriate model complexity will depend on 

amount of data for estimating parameters. 
– This is particularly important for dynamic 

system models, where very complex models are 
possible
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Model Variables in model 

Parameters in the model 

First 
term 

2nd 
term 

)ˆ(θMSEP  

f1(X; θ) x(1) 

)1()0( ,θθ  

4.04 0.36 4.40 

f3(X; θ) x(1) x(21) x(3) 

)3()2()1()0( ,,, θθθθ  

0.04 0.01 0.05 

f5(X; θ) x(1) x(2) x(3) x(4) x(5) 

)5()4()3()2()1()0( ,,,,, θθθθθθ  

0.04 0.35 0.39 

 

Example
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Summary
• Common criterion of prediction error is MSEP

– Specify target population, target variables

• MSE is not in general a good estimator of MSEP
– In particular if measured sample is not representative of 

target population, or if sample is used for parameter 
estimation

– The difference between MSE and MSE depends on p/n

• MSEP is the result of two contributions
– Variation due to fact that explanatory variables don’t 

explain all variability
– Differences between model and best model

• MSEP has a minimum for some intermediate level 
of complexity
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Evaluating decisions based on a 
model

• Not exactly the same as a good model for 
prediction.

• See David Makowski lecture. 
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THE END
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References for examples

• Gent, M. P. N., 1994,  Photosynthate
Reserves during Grain Filling in Winter 
Wheat, Agron J 86:159-167

• Michalska, B. and Witos, A. 2000. 
Weather-based spring wheat yielding 
forecasting. EJPAU online. 
http://www.ejpau.media.pl/volume3/issue2/
agronomy/art-04.html


