Example 1. Predator-prey system

- Basics of population dynamics models
- A practical question in pest management
- Extend the basic model to address the question
- Results and uses of the model

Basics of population dynamics models

Model for population, discrete time interval

• N=size of population

- Total number or number/unit area

- $\Delta t = time interval$
- $\Delta N/\Delta t =$ change in population in a time interval
- Dynamic model: model describes how variables change over time

- Often change in population is proportional to size of population. Model is
- $\Delta N / \Delta t = r N$
 - r is change in time interval per individual in population (=growth rate)
 - e.g. Population increases by 10% in a year.
 r=0.1/year.
 - r is net result, births deaths

To calculate population at any time

- $N_{\Delta t} = N_{t=0} + (\Delta N / \Delta t)_{t=0}$
- $N_{2\Delta t} = N_{\Delta t} + (\Delta N / \Delta t)_{\Delta t}$
- $N_{3\Delta t} = N_{2\Delta t} + (\Delta N / \Delta t)_{2\Delta t}$
- etc.
- e.g. Initial population $N_{t=0} = 1000$ and r=0.1/year - N₁=1100 - N₂=1210
 - etc

Continuous time model

- Now model specifies dN/dt
 - Like $\Delta N/\Delta t$ but with infinitesimal time increments
 - dN/dt=instantaneous rate of change
 - To get N at any time, integrate equation (usually numerically)

Exponential growth

- rate of change in population is proportional to size of population
- dN/dt=rN
 - r is relative growth rate
- In this case, we can solve equation analytically
- N(t)=N(0)exp(rt)

World Population Growth Through History

10 🏠

Limits to exponential growth

- Is exponential growth sustainable?
- No, eventually some limiting factor intervenes
 - Limits of food
 - Limits of area
- Population reaches some limit
- Simple model for limited growth? dN/dt=?

Logistic model of population growth

• dN/dt=rN(1-N/K)

r = relative growth rate

K = carrying capacity

Yeast population growth

Two interacting populations

Types of interaction

- Mutualism (+ +)
- Commensalism (+ 0)
- Neutralism (0 0)
- Amensalism (0 -)
- Predation parasitism (+ -)
- Competition (- -)

Predator prey interaction

Predator prey model

- Treat as dynamic system
 - two interacting populations
 - equations describe evolution over time
- Two state variables are:
 - A(t)=number of individuals of prey at time t (or just write A)
 - L(t)=number of individuals of predator at time t (or just write L)

Model for prey

- Prey have logistic growth, plus mortality due to predation
- dA/dt=r*A*(1-A/K)-PR*L
- Form for PR=rate of predation/predator?
- Predation proportional to A
- PR=a*A

Model for predator

- Rate of increase depends on rate of predation
- Mortality is proportional to L
- dL/dt= b*A*L- m*L

Predator and prey together

- Previously prey with fixed number of predators
- Predators with fixed number of prey
- What will two populations together look like?

Predator and prey oscillations

Predator as function of prey

What is the use of the predatorprey model?

- Better understanding of real world
 - Use model to study system behavior
 - Identify behavior that we hadn't thought to study (cycles).
 - If behavior exists in real world
 - We have identified new phenomenon
 - Model provides provisional explanation.
 - But does this mean that model is "true"?
- Basis for more complex (realistic) models

A model to treat a practical problem in pest management

- Biological control of aphids in wheat
- Control using ladybeetles (predators of aphids)
- How can we increase predation?
- Bianchi, F. J. J. A. and van der Werf, W. 2004. Model evaluation of the function of prey in non-crop habitats for biological control by ladybeetles in agricultural landscapes. Ecological Modelling 171, 177-193.

Describe system

Wheat fields 1670 Jacob van Ruisdael (Dutch, 1628/29–1682)

Proposed control strategy

- Increase prey in margins (artificial release). What effect will that have?
 - That should increase fecundity
 - Ladybeetles will lay more eggs in wheat field, will control wheat aphids better.
 - But less dispersal?

Questions

- Will extra prey in field margins help?
 - How much?
 - What does success depend on?

Could we study this question experimentally?

- Concerns large area (several fields and margins). Hard to experiment.
- Many possible conditions
 - Different numbers of prey in margins
 - Different aphid infestations in wheat
 - Different geometries, climates
 - Etc.
 - Would require many treatments
- So use a model

Model

- What are essential features to add to simple predator-prey model?
 - Three species: ladybeetles, prey in margins, aphids in wheat.
 - Take into account development stages of ladybeetles
 - Eggs, 4 larval stages, pupa, adult
 - More realistic model
 - Effect of temperature, effect of food on eggs, predation function
 - Take into account dispersal

Prey state variables

- Density of prey in margins
- Density of aphids in wheat

ladybeetle state variables

- Legg=density of ladybeetle eggs (number/m²)
- LL1,...,LL4 = density of ladybeetle larvae stages L1,...nL4
- LPupa=density of pupae
- Ladult=density of adults

Ladybeetle development stages

<u>http://www.youtube.com/watch?v=6zrDGh</u>
<u>2DIRU</u>

Prey dynamics

- New model for prey populations.
 - $-\Delta A/\Delta t = r^*A^*(1-A/K)-\Sigma PRi^*Li$ (PRi=ai*A)
 - (Use discrete time intervals $\Delta t = 10$ minutes)
 - Sum is over ladybeetle stages
 - Same model, different parameters for two prey populations

Predator dynamics

What processes affect population of each ladybeetle stage?

- Eggs
 - increase depends on fecundity which depends on predation
 - Decrease because of mortality
 - Decrease because of hatching
- Other stages up to adults
 - Increase depends on input from previous stage
 - Decrease because of mortality
 - Decrease because of passage into next stage
 - Except adults. For them, just mortality

Predator model

- Egg stage
- $\Delta Legg/\Delta t = (eggs laid/day)*Ladult$
 - megg*Legg
 - (fraction eggs hatched per day)*Legg
- For other stages i=L1, L2, L3, L4, pupa, adult
- ΔLi/Δt = (fraction leaving stage i-1 per day)*L(i-1) -mi*Li
 - -(fraction leaving stage i per day)*Li

Data concern development times for various temperatures

- E.g. at 15°, development times are
 - -Egg 9 days
 - -L1 9 days
 - -L2 8 days
 - -L3 8 days
 - -L4 14 days
 - Pupa 16 days

We need fraction leaving each stage

- Fraction leaving/ $\Delta t = (1/\text{development time})^* \Delta t$
- Example

10 minutes at 15° (development time 9 days) then 10 minutes at 20°. (development time 6 days) What fraction of population leaves egg stage? 10 minutes =0.0069 days)

- 1/9*0.0069 of population present at start of first period leaves during period
- 1/6*0.0069 of population present at start of second period leaves during that period.

Fecundity

• Fecundity depends on predation rate.

Total prey eaten by adult up to start of egg lay

More detailed predation function

- Rate of predation/predator was RP=a*A(t)*L(t)
 - as prey increases, rate of predation increases. Without limit
 - Is that reasonable?

Ladybeetle eating aphid

- <u>http://video.aol.com/video-detail/ladybugs-</u> <u>eating-aphids-ladybug-larvae-and-</u> <u>ladybug-adult-chowing/2410493093</u>
- What limits predation rate?

Qualitative model

- In a given time, part of time is spent searching and part is spent handling prey.
- Handling time is proportional to number of prey handled.

Functional response model

• T=Ts+Th

- Ts=search time, Th =handling time

- The number of prey found per predator per unit time is sr*A*Ts
- The handling time for those prey is ht*sr*A*Ts
- T=Ts(1+ht*sr*A)

- T=Ts(1+ht*sr*A)
- Ts/T= 1/(1+ht*sr*A)

Correction factor

Some real values

- At 20°
- Search rate sr cm²/day.
 - Value=51.9cm²/day (= 0.00519m²/day)
- At 2000aphids/m²
 - Prey found in time Ts is sr*A(t)*Ts

=10.4 aphids/day of searching.

- Handling time, for an adult at 20° – 0.0049 days = 7 minutes
- PR=10.4/(1+10.4*0.0049)=9.9
- Correction factor is 0.95.
- Is it worthwhile?
 - This is a major question in modeling.
 - Is all extra detail good? If not, why not?

Spatial organization

- The move of ladybeetles from margins to wheat is essential.
- So we need to model the spatial organization and movement of ladybeetles.

Ladybeetle adults overwinter in margins, eat prey there

• Model of field geometry?

 Divide the area studied (400m x 400m) into 10m x10m blocks.

64 🎻

Complete model

- 40*40 = 1600 cells
- In each cell, 1 prey population and 7 stages of predator
- Overall 14400 state variables

Qualitative model

- Aphids, ladybeetle eggs, larvae, pupae
 Same as before
- Ladybeetle adults, cell c

 $\Delta Ladult(c)/\Delta t =$

-mi*Ladult(c)

-(fraction emigrating per day)*Ladult(c)

+Σ(fraction moving from c' to c per day)*Ladult(c')

Qualitative model for emigration

- Residence time proportional to aphid density
- Fraction emigrating per unit time?
 - Fraction emigrating = 1/(residence time)

Quantitative model for emigration

- Residence time= rc*A
- Numerical example
 - A=2000aphids/m²
 - Rc=0.002 days/(aphid/m²)
 - Residence time=4 days
 - Fraction that emigrate in 10 minute period?
 - (1/4) *0.0069 of population present at start of period leaves during period

Qualitative model for immigration

- Emigrating ladybeetles have no preferred direction
- Number that cover distance d declines with distance

• For each starting cell, calculate number that leave then partition among other cells according to distance.

What about ladybeetles that leave simulated area?

Parameters

- Relative growth rates, mortality rates, development times etc at various temperatures.
- Where do parameters come from?
 - Literature.
 - Some are from controlled conditions
 - Others are from field (e.g. mortality rates)
 - How accurate are parameters?

Explanatory variables

- Temperature
- Geometry
- Initial population in each cell

Calculations

- Lots of calculations
 - 10 minute time step
 - At each step, calculate migration between all
 1600 cells = 2.6 million combinations

Evaluating the model

- In this case, no experimental data
- How would you evaluate this model?
- Check that results seem qualitatively reasonable
 - In particular, do adults move from margins to wheat as expected?

Scenario studies

- Field geometry fixed
 - 90% wheat, 10% margins
- Fixed constant temperature
 - 20° (but explore other temperatures)
- Initial ladybeetle density in filed margins fixed
 - 10/m²
- Initial aphid density in margins
 - 0, 1n 2, 5 or 10 aphids/m²
- Date of colonization of wheat by pest aphids
 - Day of year 120, 130, 140, 150
- Choice of scenarios is important

Results

- The model calculates values of all state variables (there are 12,800) at each time.
- Need summary variables
- Here look at integral of pest aphid density over time. (« cumulative aphids »)
- Choice of output variables is important

Aphid density

time

76 🔏

Conclusions

- Early infestation of wheat
 - Ladybeetles are effective (reduce cumulative aphids by 52%).
 - But very little effect of aphid density in margins
- Late infestation
 - Cumulative aphids is small in any case.
 - Ladybeetles reduce that by 19% with added aphids in field margins, 17% without.
 - But perhaps problem next year
- Intermediate infestation
 - Intermedaite value of cumulative aphids.
 - Value reduced by 40% with added aphids in margin, 14% without.
 - Also, more overwintering ladybeetles with added aphids.

Role of model?

- Organize thinking about system
 - Identify essential aspects (dispersion)
 - Identify important factors (effect of date of wheat infestation)
 - Give precise definition of objectives (integral of aphids)
- Better understanding about system
 - What to look for in field results (date of wheat infestation, fecundity, dispersal dynamics)
- Propose strategies to be tested
 - Reduce number of strategies (give approximate numbers of added prey, geometry,...)
- Decision tool?
 - Calculate optimal number of added prey?
 - Probably not sufficiently accurate for each situation.

THE END

