A modelling project

- In practical terms, what does a "modelling project" involve?
- What resources in time and expertise are required?

The emphasis on each stage depends on the project

- There is a very large diversity of models. Consider 3 fairly different situations.
- Examples (except first case) from survey of dynamic system models used by technical institutes, or by INRA in collaboration with technical institutes

1. Simple exploratory model

- Objective: better understanding of basic interactions (research).
- For example, basic predator prey model. Or relation between ecosystem complexity and stability. Or model of gene regulation.
- Only most important processes are taken into account
 - In predator-prey model: logistic growth, mortality of predator, predation.
- No detail for specific situation

- This is usually part of a more general research project.
 - The model is a research tool, like experimentation
- Time: a few months? (For one article)
- Expertise:
 - in domain modeled essentially.

2. More applied research model

- Objective: Develop general rules for management.
- For example, model strategies for irrigation of corn,
 - Other examples: fertilization of wheat. Weed control taking into account multi-year dynamics. Managing fish stocks as a function of fishing intensity.
- Take into account major processes that affect outcome of interest.
- Must resemble real systems

Models in survey (1)

- Models to evaluate cropping or grazing systems
 - Integrated pathogen management
 - Fertilization practices for field crops
 - Irrigation practices for field crops
 - Choice of variety for sunflower
 - Mixed cropping-animal systems
 - Milk cow systems
 - Herbivores on heterogeneous pasture
 - Rapeseed production and oil content
 - Water stress effect on vineyards

- Time: Often a thesis, 3 years (building on existing models)
- Expertise:
 - Modelled domain
 - practical problem
 - Modelling
 - programming (often a major task)
 - statistics (for parameter estimation, also a major task)

3. Model for end-users

- Objective: Decision aid for farmers or farm consultants
- For example, model of risk of disease septoriose on wheat. Recommendation to treat if risk is great.
- Model must give good results (good recommendations) for each specific situation.

Models in survey (2)

- Models of disease or insect development (for warnings)
 - Grape vines (various cryptogamic diseases)
 - Thrips on leeks
 - Rust on leeks
 - Mildew on lettuce
 - Alternariose on carrots
 - Bacteriose on walnuts
 - Oidium on strawberries
 - Thrips on peaches
 - Carpocapse on apples
 - Septoriose on wheat

Models in survey (3)

- Models to test alternative strategies
 - Energy consumption for animal housing
 - Evaluation of methane production in animal systems

Models in survey (4)

- Models to help technical institute engineers (better analysis of data)
 - Simulation of goat system production
 - Simulation of bovine grazing system

- The model is a product, provided (sold) to endusers.
- Time: Often several years, mostly for testing. (Model is often quite simple).
- Expertise:
 - Modelled domain
 - practical problem
 - Modelling
 - programming for end-users (often use a pre-existing platform)
 - statistics (for parameter estimation)

Conclusions

- Modelling projects are often long and complex
- Where to invest time and resources depends on the type of project
- So be clear about what type of project you have.

THE END

