An epidemiological approach for the deployment of disease control in successive crops

Doug Bailey, Sylvain Poggi, Vincent Faloya

UMR BIO3P - équipe Epidémiologie Sol et Systèmes (EPSOS) INRA - Centre de Rennes

- Devise models for disease <u>and inoculum</u> dynamics across successive crops.
- Extend the models to allow for inherent variability.
- Parameterise the models for chemical, biological and cultural control.
- Identify criteria for invasion and persistence.
- Use the models to optimise control.

Approach Modelling Experimentation Population dynamics Macro Field/Micro-plot Disease maps Temporal Spatiomodels temporal models Meso Epidemic processes Micro-plot/Microcosm Primary infection Pathozone Secondary infection dynamic\$ Micro Epidemic components Microcosm Growth/rates Pathozone compohents **AGRO**COMPUS RMT modélisation - 29 sept. 2009, Paris RENNES

Susceptible	$\frac{\mathrm{d}S}{\mathrm{d}t} = b(I) N\left(1 - \frac{N}{\kappa}\right) - \left(r_p X + r_s I\right)S$
Exposed	$\frac{\mathrm{d}E}{\mathrm{d}t} = \left(r_p X + r_s I\right)S - r_i E$
Infected	$\frac{\mathrm{d}I}{\mathrm{d}t} = r_i E - r_r I$
Removed	$\frac{\mathrm{d}R}{\mathrm{d}t} = r_r I$

Stochasticity (What is the *risk* of disease?)

Dynamically generated variability (Do *small* differences in control early in an epidemic lead to *large* difference in final disease levels?)

Invasion thresholds

(Are there *critical* combinations of parameters that lead to *invasion* or control?)

Persistence and hidden infestation

Stochasticity (What is the *risk* of disease?)

Dynamically generated variability (Do *small* differences in control early in an epidemic lead to *large* difference in final disease levels?)

Invasion thresholds

(Are there *critical* combinations of parameters that lead to *invasion* or control?)

Persistence and hidden infestation

Stochasticity (What is the risk of disease?)

RMT modélisation - 29 sept. 2009, Paris

Stochasticity (What is the *risk* of disease?)

Dynamically generated variability (Do *small* differences in control early in an epidemic lead to *large* difference in final disease levels?)

Invasion thresholds

(Are there *critical* combinations of parameters that lead to *invasion* or control?)

Persistence and hidden infestation

Dynamically generated variability (Does a *small* amount of control early in an epidemic lead to

large difference in final levels of disease?)

Biofumigation of *R. solani* in sugar beet by *B. napus* (Can we exploit DGV for control of field epidemics?)

Biofumigation of *R. solani* in sugar beet by *B. napus* (Are the large differences in final levels of disease caused by control of primary or secondary infection?)

Stochasticity (What is the *risk* of disease?)

Dynamically generated variability (Do *small* differences in control early in an epidemic lead to *large* difference in final disease levels?)

Invasion thresholds

(Are there *critical* combinations of parameters that lead to *invasion* or control?)

a) Fungal hyphae

The effect of resource strength on the probability of colonisation between sites

Experimental validation in microcosms

(Can a soil-borne plant pathogen exploit an invasion threshold?)

Controlling the invasive spread of disease (Can we use biological agents to block invasion?)

Protection of individual sites (Do we need to protect the entire crop?)

Stochasticity (What is the *risk* of disease?)

Dynamically generated variability (Do *small* differences in control early in an epidemic lead to *large* difference in final disease levels?)

Invasion thresholds

(Are there *critical* combinations of parameters that lead to *invasion* or control?)

Persistence and hidden infestation

Spread and control of disease in successive crops

+ Trichoderma

