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Need for Quantitative System
Approaches in Agriculture

s Agriculture in the 215t century iIs much more complex
due to: environmental concerns, limited water, climte
change: droughts & uncertainty, global competition;
bio-energy

*» Integrated and quantitative system approaches are
needed as planning & decision tools for optimal
management, & to help research develop them. Syste
Mmoedels previde these appreaches.



Integrating Field Research with
System Models Helps Both

*» Enhances understandiofjthe experimental results &
complex interactions; cause & effect relations

*» Enables their synthesis, quantificatiore&iends
resultsto longer time periods

*» Helpstransfer resulistheir optimal application to other
solls/ climates, aneids management

*» ldentifles knowledge gaps focus further research;
reduces duplication

*Geod fieldidata neljproveiie menels
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The CGIAR Science Councll
(2005) Research Priorities:

“Modeling and the ability to combine data from
different sources,...promises to revolutionize
understanding of processes affecting management of
natural resources”

“Thanks to strategic accumulation of data, tools, am
modeling resources in the coming decade, one can
expect the development of a more predictive approac
to agriculture”.

Policy to focus limited resources on a few
comprehensive field studies and then use models to
extend them, to other locations and countres.
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OUR UNIT'S RESEARCH MISSION

Develop whole-system approaches to help
optimize resource management & evaluate/
develop sustainable agricultural systems:

* Synthesis of disciplinary knowledge to the whole system
level and collaborative research to fill knowledge gaps.

 Computer models of agriculture systems to help research,
site-specific management, and create simpler decision aids.

e Decision support technology packages for farmers,
ranchers, ag consultants and action agencies for planning
and management.

e Techniques for more efficient development & maintenance
of models & decision tools




More Recent Major Team Products

 The Root Zone Water Quality Model (RZWQM) to simulate
management effects on water, water quality and crop
production.

Updated to RZWQM2-DSSAT & RZWQM?2 -GIS for precision
spatial management & conservation effects assessme@EAP .

« GPFARM, a simpler whole farm/ranch decision supportsystem
for strategic planning.

 Object Modeling System: Create models from libraryof stand-
alone modules




Root Zone Water Quality Model

Modeling Management Effects on Water,
Water Quality and Crop production

Root Zone Water
Quality Model

Water Resources Publications, LLC



Distinguishing Features of
RZWQM

Agricultural management practices and their
Integrated effects on water, crop production, and
environmental quality ( tillage, Irrigation,
fertilization, manure application, tile drainage,
pesticide application, and crop rotation).

Macropore/preferential flow.
Water table fluctuation and tile flow.
Chemical transport in runoff/percolation water.




Distinguishing Features
of RZWOQM

Detailed carbon/nitrogen dynamics with
consideration of microbial populations.
Multiple year simulation for crop rotations with
capability of answering “what-if” scenarios
Detailed crop-specific models from DSSAT
package
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RZWQM-RZWQM2 Applications

“+ Extensively used in U.S & other countries to
evaluate water quality/quantity impacts of
ag management & develop sustainable
systems.

“ Adopted by EPA and used by pesticide
industry for pesticide registration

“*Used by USGS for NAWQA program

“ China: water & N could be reduced by 50%
w/o reducing corn yield

“ Continues to play an'important rol
new research onroiects.




GPFARM: A Farm Level DSS

A whole-farm decision R > i, N
support system for strategic e gl - -
planning: evaluation of
alternate cropping system,
range-livestock systems,
and integrated farming
options for production,

economics, and environmental impacts

End Users: Farmers and Ranchers, Consultants,
Ction"Agencies, Extensiony and Scientists
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GPFARM Applications

<+ Several invited presentations to Colorado
Conservation Tillage Association & farmers

< MOU with CAWG: GPFARM distributed to 600
members: trained 150 members

<+ GPFARM-Range model has been extensively
used for synthesizing research data from three
range research stations in the Great Plains




The Object Modeling System
(OMS)

An Object Modeling System consists of a library of
modules which facilitates the assembly of a modeling
package, tailored to the problem, data constraints, and
scale of application.

Collaborators: ARS, NRCS, USGS, Friedrich-Schiller
University, Jena, Germany

C
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Has been adopted by NRCS as a uniform system to

eliver conservation technology and is being used to
evelop a new field to watershed scale model.
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CEAP Watershed Compared to SWAT
® The semi-distributed SWAT
concept considers distributed
Information within a sub-basin only "‘
A 4

statistically but not in terms of
location. |
ral

® Important processes, e.g., late
water /nutrient transport and
specific management in some
parts of a sub-basin cannot be
simulated.

The fully distributed
CEAP Watershed Model

concept allows the

Processes.



Recent Examples of Model
Application to Enhance and
Extend field Research




1. Water Quality Studies
In Tile-Drained Cropping Systems
(Nashua, lowa)




Experimental Design

36 l-acre plots in Nashua, IA under tile drainage (at 1@ cm
depth); Variety of data over time from 1978 to 2003

Two crop rotations: continuous corn (CC) and corrsoybean (CS)
rotations

Four tillage systems: moldboard plow (MP), ridgeitl (RT), chisel
plow (CP), and netill (NT)

Fertlizers: anhydrous ammonium (AA) from 1977 to 1993; UAN
from 1993 to 1998

Swine manure from 1998 to 2003: fall & spring appkations
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Using Validated Model to Extend Results to
multiple years and Create

Simpler Decision Tools




Simulated yearly water balance and crop production averaged over 24-yr for different crop
rotation, tillage, and drainage scenarios. Results for corn -soybean rotation were taken as

averages from CS and SC phases of the rotation (Ma et al., 2007b).

Scenarios Drain Lateral**  Runoff ET***  Cornyield Cornbiomass ET Soybean Soybean
flow flow (cm) (corn,  (kg/ha) (kg/ha) (soybean, vyield (kg/ha) biomass
(cm) (cm) cm) cm) (kg/ha)

CC-NT-CD 15.2 57.8 7920.3 18433.5 --- --- ---
CC-MP-CD 7.2 13.4 7.3 61.3 7908.0 18382.9 --- --- ---
CC-CP-CD 8.3 14.7 7.4 58.8 7921.7 18433.2 --- --- ---

CS-NT-CD 9.8 18.2 7.6 58.4 7927.3 18428.6 48.4 3024.4 8281.8
CS-MP-CD 8.7 17.1 7.5 59.7 7959.0 18472.6 51.6 3098.3 8638.8
CS-CP-CD 9.5 17.9 7.6 58.8 7958.3 18487.6 49.3 3052.2 8356.0

* CC: continuous corn; CS: corn-soybean rotation; NT: no-till; MP: moldboard plow; CP: chisel plow; FD: free
drainage; CD: controlled drainage.




Simulated yearly nitrogen balance under different c rop rotation, tillage, and drainage scenarios.
Units are in Kg N/ha unless stated otherwise. N app lication rate was 202 kg N/ha for CC and 168 kg

N/ha on corn for CS and SC. Results for corn  -soybean rotation were taken as averages from CS and
SC phases of the rotation (Ma et al., 2007b).

Scenarios Flow- N loss N loss Net Denitrificatio N uptake in N uptakein N Ainorganic A organic
weighted N in to Mineraliza- n corn biomass soybean fixation N (1979- N (1979-
concentrati Tile lateral tion biomass 2002) 2002)
on (mg/L) flow
CC-NT-CD 15.3 13.4 21.9 72.2 11.3 224 .4 -—- 86.0 1647.6
CC-MP-CD 18.3 13.1 20.6 69.2 94 224.3 --- --- 81.2 1641.6
CC-CP-CD 16.6 13.7 22.0 72.1 10.5 224.7 83.2 1644.6

CS-NT-CD 11.7 11.4 21.2 115.8 13.3 225.6 322.4 246.3 49.5 1727.6
CS-MP-CD 13.4 11.7 22.1 117.4 10.1 226.5 336.9 254.9 46.3 1798.6

CS-CP-CD 12.6 11.9 22.2 116.2 11.5 226.8 325.4 249.7 52.0 1684.7







Alternative Crop Rotation Exp.




SYNTHESIS — Biomass and Yield in 4 Rotations
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Soil water (mm)
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Using Validated Model to Explore
Drought Management Strategies




Summer Crop Selection In
Rotation with Wheat
Based on Initial Water




!_\
o
=
o

millet

o
o0
o
0

10% PAW

Cumulative probabillities
of Grain yields of
Corn, Prosomillet and
Canola, and Biomass
of Foxtail millet and DI e e
Triticale planted with

25% PAW

o
o))
o
o))

—=—50% PAW

o
o
~

~-m~ 75% PAW

cumulative probability

o

cumulative probability

o
(N

- 100% PAW

o
o

=1
Plant Availalble 5
Water at planting g,
from O to 100% B
PAW In the soil 01000 2000 3000 4000 5000 6000 7
Yield, kg/ha

profile below 45 cm
was constrained not to
exceed 50% of PAW

at field capacity.

=
o

d) Foxtail o - e) Triticale

2
o
]
o
o
S
S
)
=
=
<
S
IS
S
3]

o
0
3
@
14

o

e

o
o
o))

o
o
~

cuCanuIative probability

o
(N

o
o

3000 6000 9000 12000 150 0 3000 6000 9000 12000 150




Predicting Peak Standing Crop (rangeland biomass) a t different
levels of initial soil water Contents (SWC) and
April -May precipitation
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Limited Irrigation Studies on Corn
In the Central Great Plains




Synthesis of Data: Grain Yield of Corn
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Using Validated Models to Explore

alternative Scenarios for Managing Limited
Irrigation Water




Rain out experiments with different levels of irrigation
iIn Corn
(Seasonal PET=90 cm, irrigated weekly)

Irrigation, cm




Grain Yield (20:80, 40:60 & 50:50 split - 94 year average)
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N balance
(20:80 split - 94 year average)
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Limited Water Optimization Tool Interface
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Production Function
for Water Optimizer




Simulate yield response to irrigation and ETcrop
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SOIL WATER DEPLETION LEVEL FOR IRRIGATION

Simulated corn grain Yyield
(a) No. of irrigations and irrigation amount response to Initiation  of
N irrigation at different soil
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Late Initiation of irrigation
- Comparison between
solls
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3. Water and N Management for
Wheat-Maize Double-Cropping
System in China
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Climate Change Effects on
Cropping Systems
In the Central Great Plains




Wheat Yield in WCF for Projected Scenarios
Over the Baseline Experiment Years, 1992 to 2007
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Maize Yield in WCF for Projected Scenarios
Over the Baseline Experime

Probability

Probability

1.0 - j
0.8 - N
] }
0.6 Va
, CO, (ppm)
2T T PP PP PP PPP PP 415
0.2 550
::/ -— ¢ ammm oo oo 693
< 836
0041 =
1000 2000 3000 4000 5000
Yield (kg/ha)
1.0 - (-
P
0.8 -
[
0.6 L
/ Precipitation (%)
0.4 - ) BL
1 I R YR I LT RR R R LRI S90
021 [/~ S80
. : -— o amms o0 ammm o o S?O
Jx
004 < S60
1000 2000 3000 4000 5000

Yield (kg/ha

nt Years, 1992 to 2007/

1.0 - /
0.8 1 /v
_ i:
0.6 N :’o'
i Temperature (°C)
9 g BL
p) & eecsceccscescsne S1.9W0.8
0.2 - LN S2.7W1.6
—_—e—emee S3.5W3.2
(. S4.3W3.2
0044 °
1000 2000 3000 4000 5000
Yield (kg/ha)
1.0 - / 2
0.8 - I
- /-
0.6 - 5k
7 _
-~ .©  Projected years
0.4 1 | .-
K] .' BL
ady. ®  ceeccscecsccsces 2025
0.2 { .-t 2050
19y —_—e——e—. 2075
00 ¢+ 2100

1000

5000

4000

3000

2000
Yield (kg/he




Thank you very much for your
attention




International Collaborations

1. Enhancing applications of existing models In
field research

2. Easier parameterization of models for field
scientists—effective properties of soils/crops

3. Improving model components, e.g., water
stress response, N uptake, management
effects, ----

| ——




International Collaborations
Contd.

4. Developing next-generation, stand-alone
modular process components

5. Sharing model components and
databases

6. Possibly developing a common modular
modeling framework, with
parameterization, visualization, and
analysis tools




ASA-SSSA-CSSA Initiatives to
Advance Models and Applications

A. A new book series on Advances in Ag
Systems Modeling:
1. Response of crops to limited water
2. Introducing system models In field research
3. Root-soll interactions
4. Quantifying soil structure effects
5. Quantifying solil carbon changes in cropping systems




ASA-SSSA-CSSA Initiatives to
Advance Models and Applications

B. Ad-hoc Committee on Modules, Models, and

Databases:

1. E-publish well-documented code for process modules, after
having them peer reviewed for quality of science,
documentation and meta data, industry-standard code
structure, and pre-published validation.

2. E-publish the models built from peer-reviewed modules,
after peer review of the model interfaces and pre-published

validations.




Ad-hoc Committee Contd.

3. E-publish experimental databases needed for modules
and models after peer review for quality of
measurements, spatial representation, and
completeness for calibration/validation

4. Maintain a library of peer-reviewed modules, models,
and databases on the CSA website or website of a
contractor or collaborator




Purpose of the Proposed Activities

* Advance science through synthesis and quantification of
processes and interactions in the form of code, which scientists
can use to build future models.

 Promote sharing of modules, models, and databases, which will
reduce duplication and encourage the best science in the modules
contributed by the experts for each process.

 E-publishing and web storage of modules, models, and databases
will provide publishing credit to the contributors, an essential
motivation for time consuming tasks of using standard code
structure and documentation.




e |mportant Note:

The above proposed activities are not
supposed to interfere with or impede
further development and applications of
existing models. Rather, they are meant to
help future enhancement of these models
by providing peer-reviewed components.




The Tri-Societies welcome your
feedback on these Initiatives

And future collaborations




