Analyse d'un réseau d'essais « variétés »

Exemple du réseau« variétés de blé tendre d'hiver (BTH) »

François PIRAUX Arvalis – Institut du végétal

Séminaire méta-analyse – 13 juin 2013

Plan

- Définition et objectifs d'un réseau d'essais « variétés »
- Présentation de l'exemple
- Méthodes d'analyse
- Analyse de l'exemple

Définition

Réseau d'essais multi-local et/ou pluri-annuel ou MET (multienvironment trials) = ensemble d'essais de même protocole réalisés en différents endroits et/ou différentes années.

Un MET fait l'objet d'une **planification** formalisée au travers d'un **protocole expérimental** qui doit comprendre, au minimum, les éléments suivants :

- •Définition du but et des conditions de l'expérience (conduite de culture)
- Définition des facteurs étudiés (liste de variétés)
- •Définition des variables d'intérêt
- •Définition des unités expérimentales : taille, forme, bordures, ...
- •Dispositif expérimental au niveau d'un essai
- Choix des environnements (liste des lieux)
- Méthode d'analyse des résultats

Objectif

Chaque année, une 30 de variétés de BTH sont inscrites en France. Arvalis évalue la valeur agronomique et technologique de ces variétés dans des essais au champ, dans un but de préconisation.

Objectif 1

Estimer la valeur moyenne d'un ensemble de variétés dans une région donnée et quantifier le niveau d'interaction entre les variétés et les environnements.

- → on choisira des environnements représentatifs
- → nécessite de bien définir la population d'environnements d'intérêt

Objectif

On fait des essais en réseau parce qu'on s'attend à ce que les résultats varient en fonction de l'environnement \rightarrow interaction variétés*essais.

Dans l'analyse d'un MET, on accordera donc souvent une importance particulière à la quantification, à la description et à la prédiction de l'interaction entre les variétés et les environnements (IGE).

Objectif 2

Etude des IGE, par exemple, identifier les covariables génotypiques et environnementales à l'origine des interactions G*E et quantifier leur effet.

→ on choisira des environnements contrastés

Présentation de l'exemple

Réseau d'essais variétés de blé tendre

Nombre de Rdt	Annees							
Varietes	2003	2004	2005	2006	2007	2008	2009	2010
ASTRAKAN	21	8						
ALLISTER	18	23	1					
ACIENDA	3	21	24	11				
AGRESTIS		3	1	1				
AGUILA			26	22	5			
HYSCORE				11	6	3		
ACCOR					30	10		
ADEQUAT					9	5		
ALDRIC					44	36	32	16
APACHE	24	30	38	43	48	49	49	60

Remarque : valeur = nombre d'essais

Présentation de l'exemple

186 variétés de blé tendre

137 essais (BAC ou alpha-plan, 3 ou 4 rep par essai)

58 lieux

8 années : 2003 à 2010

Nombre moyen de variétés par essai : 34.1

Nombre d'années de présence des variétés :

Nb d'années: 1 2 3 4 5 6 7 8

Nb de variétés: 69 57 20 12 9 9 4 6

Nombre de données observées : 4676 (données moyennes)

Nombres de données dans le cas d'un tableau complet : 186*137 = 25482

Taux de remplissage : 4676/25482 = 0.184

- La méthode la plus efficace est l'analyse en une étape (sur données individuelles), mais elle est souvent compliquée :
 - beaucoup d'essais et de variétés
 - jeux de données déséquilibrés
 - dispositifs expérimentaux différents d'un essai à l'autre
- Une alternative populaire est l'analyse en deux étapes :

Étape 1 : analyse et validation des essais individuels > moyennes des variétés par essai

Étape 2 : analyse des données moyennes par essai obtenues à l'étape 1

Étape 1: analyse et validation des essais individuels

- 1. Analyse agronomique des essais
 - validation agronomique de l'essai (respect du protocole)
 - ✓ conduite de culture, méthodes de mesures
 - ✓ facteurs limitants indésirables sur l'essai : enherbement, parasitisme, gel, pertes de plantes
 - √ Homogénéité visuelle
- 2. Analyse statistique des essais
- validation statistique de l'essai (absence de données aberrantes, ETR, ...)
- estimation des moyennes par variété et de la précision de ces moyennes

Exemple de fiche de validation d'un essai

Suivi agronomique détaillé : les	points clefs de con	Validation	Validation agronomique			
Accidents ou Applications	Avis de l'expérimentateur	Commentaires	Dispositif et plan d'essai			
Implantation			Hétérogénéité de terrain (sol,résid	u Assez mal contrôlée		
Régularité de semis et de densité	Régulière		Sens travail du sol/semis	Perpendiculaire		
Vitesse de la levée	Lente					
Validité de la levée	Régulière		Conformité au protocole de	e la conduite		
Date de levée	01/11/2010		conforme aux demandes du			
Hiver			protocole :	Oui		
Excès d'eau	Nul		Commentaire sur la conduite de	l'essai		
Froid	Moyen		Commentane dan la conduite de	10004		
Montaison / Remplissage	Moyon					
JNO	Nul					
Mosaïque	Nul		Validité agronomique			
Homogénéité de hauteur	TTGI		***************************************	•		
=			Avis du technicier réalisateur de l'essa			
(absence de moutonnement)	Nul		Commentaire et représentativ			
Excés d'eau				ui n'a pas bénéficié d'une pluviométrie suffisante		
Sécheresse	Fort		pour réaliser un rendement correct			
Températures froides	Non		•			
Températures élevées	Oui		***************************************			
Piétin échaudage	Nul		MOCADARDORO CO			
Autres			Si abandon, date et raison de l'al	bandon		
Traitements fongicides			date abandon			
Efficacité	Très bonne		raison			
Phytotoxicité	Nul					
MALADIES dominantes sur l'essai (ou sur	Rouille naine		Quelques précisions po	ur la validation du rapport d'essais		
bloc ou parcelle Non Traité) Désherbage	rodille Hallle		Conformité des méthodes	de mesures et notations / aux		
Efficacité	Correcte		protocoles et m.o.	Non		
	Nul					
Phytotoxicité Verse	INUI		Si non préciser les différences	S.		
	NIII					
Précoce	Nulle		stades Z30 sur les témoins	ges épis/m² sur toutes les variétés ni de		
Récolte	Faible	Surtout de la casse d'épis	stades 250 sur les terrioris			
F			Analyse de variance du ren	ndement retenue		
Fertilisation						
Carence minérale	Non					
Brûlure	Non		ETR de l'essai :	4.7		
Efficacité	Correcte		Nombre de blocs analysés :			
Commentaire			Bloc supprimé et justification :			
Récolte						
Stade de récolte	A maturité					
Conditions de récolte	Facile		Modalitées supprimées et justific	cation :		
Egrenage	Faible					
Casse d'épis	Partielle					
Germination	Nul		Parcelles supprimées ou manqua	antes et justification:		
Dégats d'oiseaux	Absence					
Dégats de grêle	Non					
Autres						

Étape 2 : analyse du réseau

- •Objectif 1 : estimer la valeur moyenne des variétés et quantifier leur niveau d'interaction
- Modélisation des données moyennes par essai avec un modèle mixte

Modèle 1

```
y_{ij} = \mu + v_i + E_i + (vE)_{ij} + e_{ij}
            = moyenne de la variété i dans l'essai j
   y_{ij}
            = moyenne générale
   \mu
            = effet principal de la variété i
   v_i
            = effet principal de l'essai j, E_i \sim iid N(0, \sigma_E^2)
   E_i
   (vE)_{ij} = interaction de la variété i et de l'essai j, (vE)_{ij} \sim iid \ N(0, \sigma_{vE}^2)
          = erreur associée à la moyenne y_{ii}
   e_{ij}
        \mathbf{R} = var(e_{ij}), supposée connue à partir de la première étape de l'analyse
```


Différents dispositifs expérimentaux sont utilisés dans nos essais : BAC (blocs aléatoires complets) et alpha-plans.

Différents modèles d'analyse sont utilisés :

- •pour les BAC : modèle fixe ou modèle mixte avec autocorrélation spatiale
- pour les alpha-plans : modèle mixte avec effets blocs incomplets aléatoires
- \rightarrow la structure de R_j est de type générale (us) (sauf analyse BAC)

$$\begin{bmatrix} \sigma_{1.j}^2 & \sigma_{21.j} & \sigma_{31.j} & \sigma_{41.j} \\ \sigma_{21.j} & \sigma_{2.j}^2 & \sigma_{32.j} & \sigma_{42.j} \\ \sigma_{31.j} & \sigma_{32.j} & \sigma_{3.j}^2 & \sigma_{43.j} \\ \sigma_{41.j} & \sigma_{42.j} & \sigma_{43.j} & \sigma_{4.j}^2 \end{bmatrix}$$

 $m{R}$ est bloc-diagonale de type $m{R}_{us}: \quad m{R} = igoplus_{m{R}_j} \quad ext{avec} \quad m{R}_j = var(m{e}_j)$

Exemple

$\sigma_{1.1}^2$		$\sigma_{31.1}$		0	0	0	0	0	0
$\sigma_{21.1}$	$\sigma_{2.1}^2$	$\sigma_{32.1}$	$\sigma_{42.1}$	0	0	0	0	0	0
$\sigma_{31.1}$	$\sigma_{32.1}$	$\sigma_{3.1}^2$	$\sigma_{43.1}$	0	0	0	0	0	О
$\sigma_{41.1}$	$\sigma_{42.1}$	$\sigma_{43.1}$	$\sigma_{4.1}^2$	0	0	0	0	0	0
0	0	0	0	$\sigma_{1.2}^2$	$\sigma_{21.2}$		0	0	0
0	0	0	0	$\sigma_{21.2}$	$\sigma_{2.2}^2$	$\sigma_{32.2}$	0	0	0
0	0	0	0	$\sigma_{31.2}$	$\sigma_{32.2}$	$\sigma_{3.2}^2$	0	0	0
0	0	0	0	0	0	0	$\sigma_{1.3}^2$	$\sigma_{21.3}$	$\sigma_{31.3}$
0	0	0	0	0	0	0	$\sigma_{21.3}$	$\sigma_{2.3}^2$	$\sigma_{32.3}$
Lo	0	0	0	0	0	0	$\sigma_{31.3}$	$\sigma_{32.3}$	$\sigma_{3.3}^2$

Modèle 1.0

Idéalement, il faudrait prendre $var(e_{ij}) = R_{us}$

- → Cela ne facilite pas beaucoup l'analyse qui est équivalente à l'analyse en une étape (sur données individuelles)
- \rightarrow Différentes approximations de R_{us} sont utilisées.

• Modèle 1.1

On considère
$$var(e_{ij}) = \mathbf{R}_{id} = \sigma^2 \mathbf{I}$$

Exemple

Correct si:

- Analyse orthogonale (BAC)
- Les essais ont la même variance résiduelle $\sigma_{r\acute{e}siduelle}^2$
- Les essais ont le même nombre de répétitions n

$$\rightarrow \sigma^2 = \sigma_{r\acute{e}siduelle}^2/n$$

Modèle 1.2

On considère $var(e_{ij}) = \mathbf{R}_{id.j} \rightarrow \mathbf{R}_j = 0.5 \text{ vmc}_j \mathbf{I}$ vmc_i = variance moyenne des comparaisons entre variétés de l'essai j

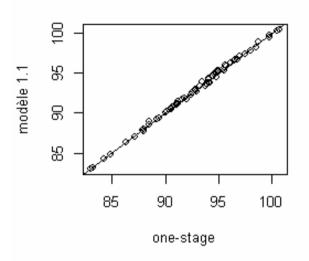
Exemple

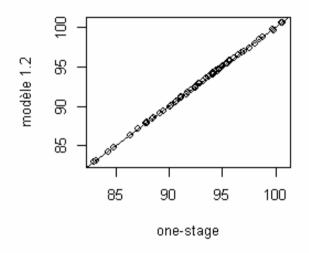
_ ^									
σ_1^2	0	0	0	0	0	0	0	0	o
0	σ_1^2	0	0	0	0	0	0	0	0
0	0	σ_1^2	0	0	0	0	0	0	о
0	0	0	σ_1^2	0	0	0	0	0	0
0	0	0	0	σ_2^2	0	0	o	o	0
0	0	0	0	0	σ_2^2	0	0	0	0
0	0	0	0	0	0	σ_2^2	0	0	0
0	0	0	0	0	0	0	σ_3^2	0	0
0	0	0	0	0	0	0	0	σ_3^2	0
Lo	0	0	0	0	0	0	0	0	σ_3^2]

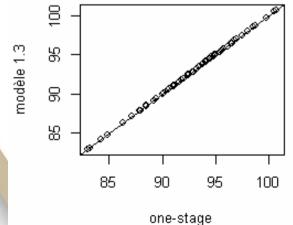
Modèle 1.3

On considère
$$var(e_{ij}) = \mathbf{R}_{diag} = \text{diag}(\mathbf{R}_{us})$$

Exemple

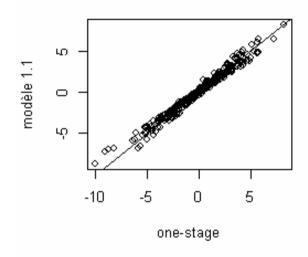

Comparaison des modèle 1.1 (R_{id}), 1.2 ($R_{id.j}$) et 1.3 (R_{diag}) sur un sous-ensemble du réseau d'essais

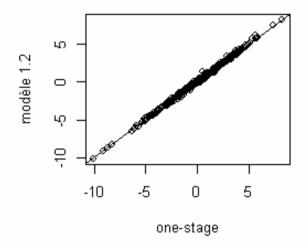

- 17 essais en alpha-plans
- 68 variétés
- 377 moyennes
- Critères de comparaison :
 - Corrélation de Pearson entre les moyennes de l'analyse en une étape et des modèle 1.1, 1.2 et 1.3
 - Corrélation de Pearson entre les effets d'interaction variété*essai de l'analyse en une étape et des modèle 1.1, 1.2 et 1.3
 - Corrélation de Pearson entre les erreurs-standards des écarts à la moyenne générale de l'analyse en une étape et des modèle 1.1, 1.2 et 1.3
- Analyses réalisées avec le logiciel R, package asreml

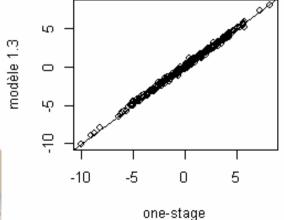


Résultats

Moyennes des variétés

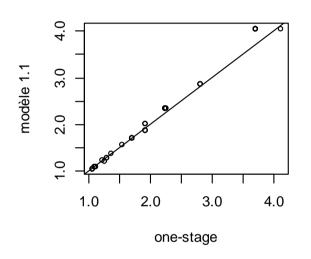


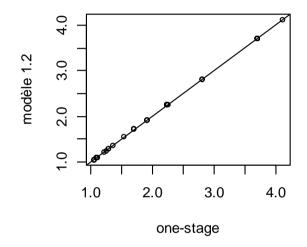


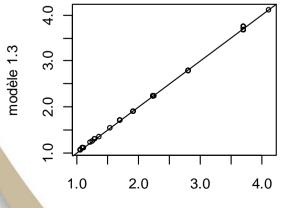

Modèle Corrélation 1.1 0.9989 1.2 0.9999 1.3 0.9999

Résultats

•Effets IGE




Modèle Corrélation 1.1 0.9887 1.2 0.9987 1.3 0.9984



Résultats

•Erreurs-standards des écarts à la moyenne générale

one-stage

Modèle Corrélation 1.1 0.9979 1.2 0.9999 1.3 0.9998

Résultats

•Étude de Möhring et Piepho (crop science, vol. 49, november-december 2009)

Corrélation de Pearson entre les moyennes de l'analyse en une étape et des modèle 1.1, 1.2 et 1.3

	Experiment	modèle 1.1	modèle 1.2	modèle 1.3
_	1	0.9795	0.9951	0.9946
	2	0.9903	0.9894	0.9908
	3	0.9811	0.9906	0.9908
	4	0.9763	0.9821	0.9852

Modèle 2

Extension du modèle 1 avec variance de l'interaction variété*essai hétérogène (variance différente par variété) :

$$(vE)_{ij} \sim iid\ N(0, \sigma_{vE.i}^2)$$

$$\sigma_{vE,i}^2$$
 = critère de stabilité

Modèle 1.2 ($R_{id.j}$)

Résultats

1. Composantes de la variance

ID_ESSAI 177.6

Varietes:ID_ESSAI 15.76

Résultats (extrait)

- 2. Estimation des moyennes des variétés
- 3. Estimation de la stabilité des variétés
- 4. Estimation des écarts à la moyenne générale

ariétés	Rdt(q/ha)	Ecart-type de l'IGE	q/ha)				
V1	96.3	3.7				ı =	ı
V2	95.4	3.8			<u> </u>		
V3	95.4	2.7			<u> </u>		
V4	95.3	3			<u> </u>		
V5	94.9	3.6			├	-	
V6	94.9	2.9			i —	-	
V7	94.8	3.1					4
V8	94.8	3.7			; ⊢		
V9	94.5	4.9			·	-	
V10	94.2	2.6			-		
V11	93.8	3.3			· -		
V12	93.7	2.6			·		
V13	93.5	4					
V14	93.4	3.6			; ⊢	—	
V15	92.9	2.4			<u> </u>	⊣	
V16	92.7	3.8			<u> </u>		
V17	92.9	2.7			-		
V18	92.8	2.4					
V19	92.3	4		· · · · · · · · · · · · · · · · · · ·	-		
V20	92.1	4.3					
V21	92.1	7.5		· · · · · · · · · · · · · · · · · · ·			
V22	91.9	4.1		—			
V23	91.1	4		-	; =		
V24	91	1.7			-		
V25	90.9	2.6			! -		
V26	89.1	4.1		- ■			
V27	88.7	3.3		⊢	-		
V28	88.4	6.6		——	:		
V29	88.1	3.5			<u>:</u>		
V30	87.8	1.7			:		
					:		
				I	:	T	
			85.00	88.75	92.50	96.25	100.00
					Rendement(q/ha)		

Modèle 2, version 2.2

Résultats

1.Composantes de la variance

```
ID_ESSAI
178.1
```

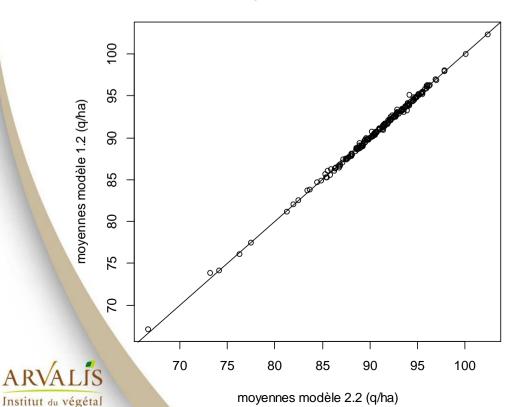
Varietes:ID_ESSAI

V1 9.794

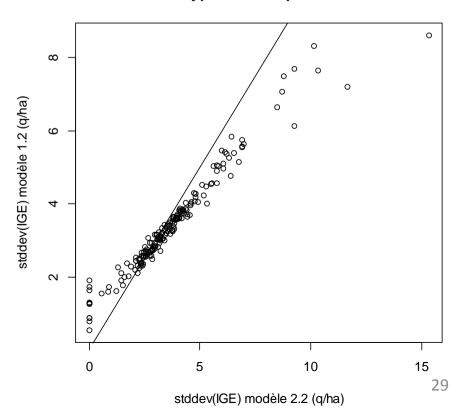
V2 13.26

V3 17.63

...



2. Comparaison modèle 1 vs modèle 2


Test du rapport de vraisemblances

LRT	ddl	proba.chi2
645.1	185	3.11e-52

écart-type des IGE par variétés

Merci de votre attention

