Model evaluation

ENDURE Volterra Nov. 10-14, 2016

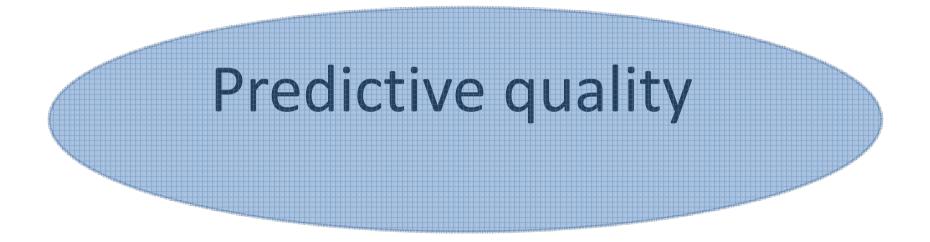
1

What is model evaluation?

- How well does the model fulfill its objectives?
 Objective
 - Good predictions For a certain range of
 - Good decisions
 conditions
 - The result is on a continuum, from very poor to very good
 - We are treating the model as an engineering tool

Why evaluate?

- The modeler needs evaluation
 - Without evaluation, modeling is not a science
 Think fortune telling
- The user needs evaluation
 - How can we make decisions if we don't know reliability of information?



Define prediction error

- e=Y-f(X;θ)
 - Y is observation (for some target population)
 - f(X;θ) is model (f=equations, X=inputs, θ=parameters)
- We are interested in distribution of e
 - We don't know e for each prediction
 - If we did, we would get perfect predictions

Two viewpoints for prediction error

- 1. Model equations and parameters are fixed. Inputs are perfectly well known.
 - How well does this specific model predict?
 - e has distribution because of Y
- 2. Model equations, parameters and inputs are uncertain.
 - How good are predictions, averaged over the distribution of models and parameters?
 - e.g. averaged over climate models for future climate
 - e has distribution because of Y and $f(X;\theta)$

Summary of prediction error

- Mean squared error of prediction (MSEP).
- Squared error, for fixed model, averaged over target population.

$$MSEP = E\left\{ \left[Y - f(\hat{X};\hat{\theta}) \right]^2 \right\}$$

Estimation of MSEP

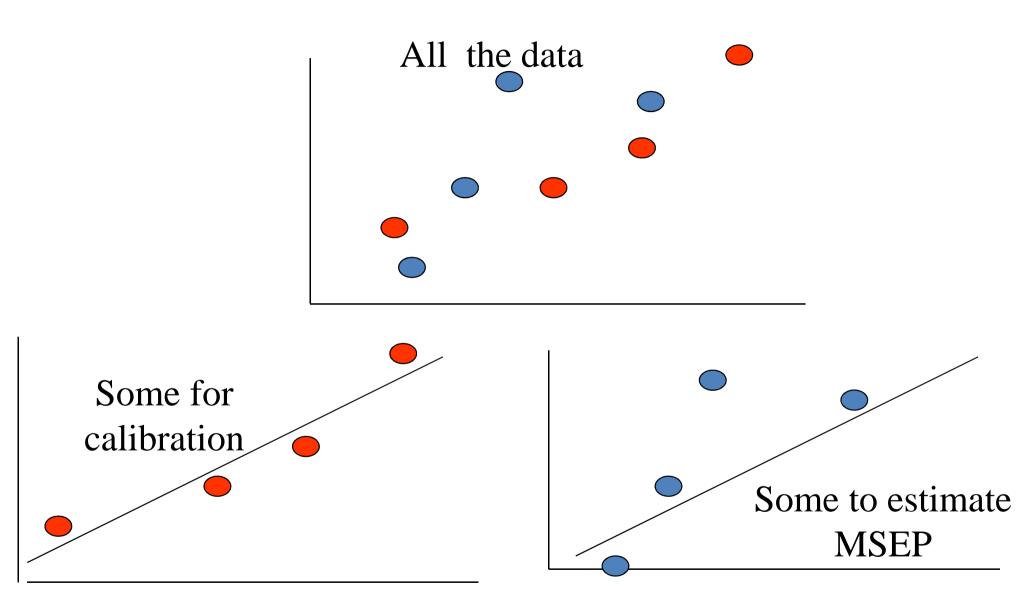
- In general, MSEP can't be measured.
 concerns all predictions of interest
- Estimate MSEP based on a sample.

$$MSEP = (1/N) \sum_{i=1}^{N} \left\{ \left[Y_i - f(\hat{X}; \hat{\theta}) \right]^2 \right\} = MSE$$

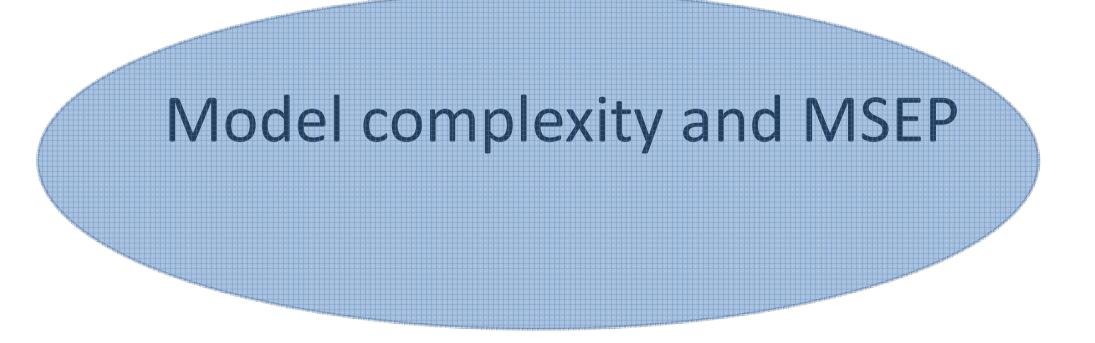
DANGER!

- 1. Sample must represent target population
 - Of course. If sample is different than target population, then errors for sample aren't necessarily representative of errors of population
 - e.g. Climate change. Are errors for sample representative of errors under climate change?

- 2. Sample musn't be used for calibration
 - If the model is specifically fit to the data, in general sample error < population error.
 - One solution is data splitting. Use part of data for calibration, separate data for evaluation



ENDURE Volterra Nov. 10-14, 2016



- MSEP can be written as the sum of three contributions
 - Helps understand the relation of MSEP to complexity
 - Even though in practice we can't calculate the three contributions

The three sources of error

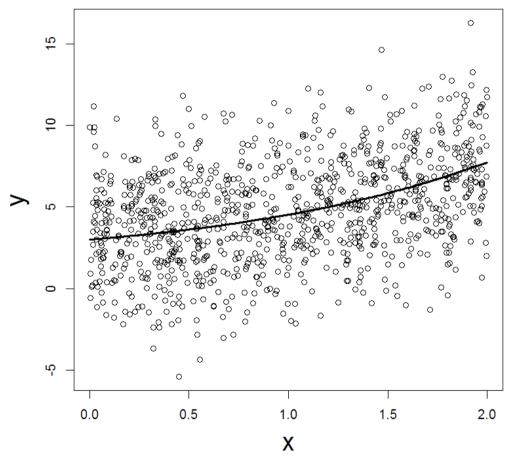
- 1. The model explanatory variables X don't explain all the variability of the system
 - First term measures TRUE-BEST(X)
- The model used doesn't have the same equations as the best function of X
 - Second term measures $BEST(X) f(X, \theta^*)$
- The estimated parameters are not the best possible
 - Third term measures $f(X,\theta^*)-f(X,\theta)$

- Illustrate with an artificial, simple case
 - The principle applies to all models

- TRUE behavior of y
 TRUE=3+x+0.4x²+0.1x³+0.02x⁴+ε ε~N(0,3²)
 x is the explanatory variable x~U(0,2)
- BEST(X)

 $BEST(X) = 3 + x + 0.4x^2 + 0.1x^3 + 0.02x^4$

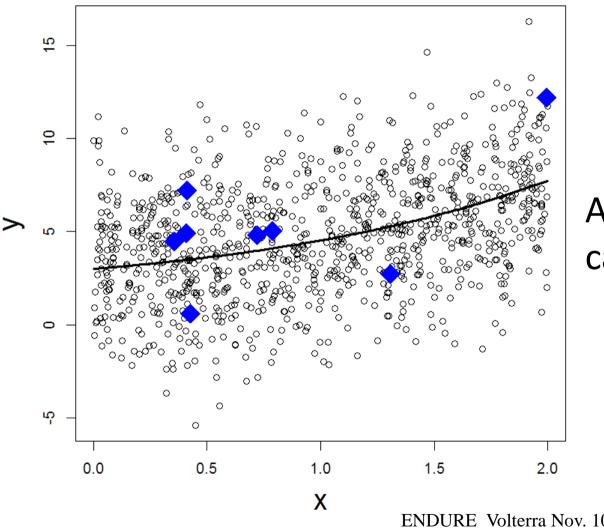
population



 $BEST(X) = 3 + x + 0.4x^2 + 0.1x^3 + 0.02x^4$

ENDURE Volterra Nov. 10-14, 2016

population



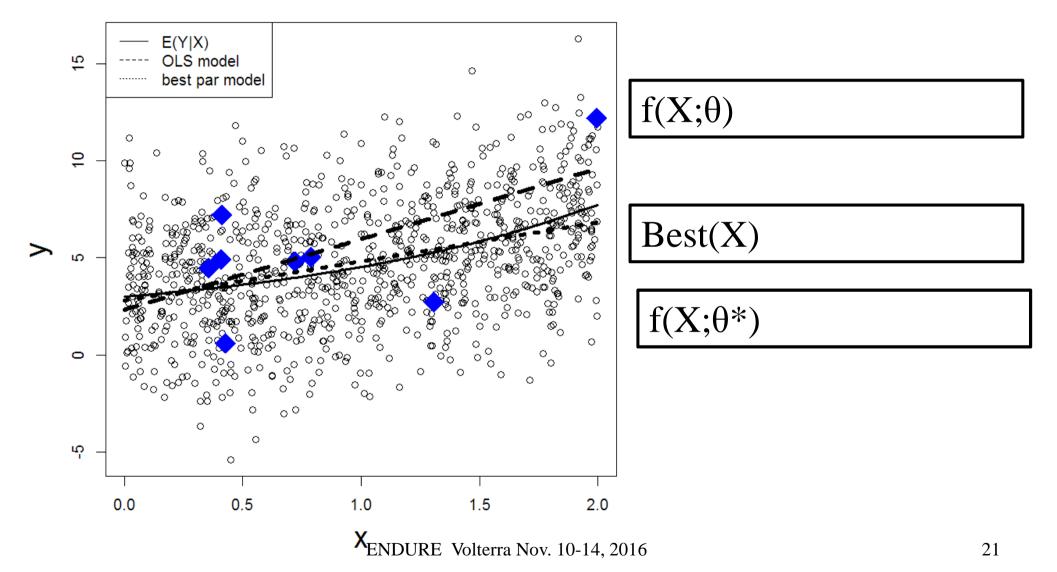
A random sample of size 8 for calibration

Look at a series of f(X;θ)

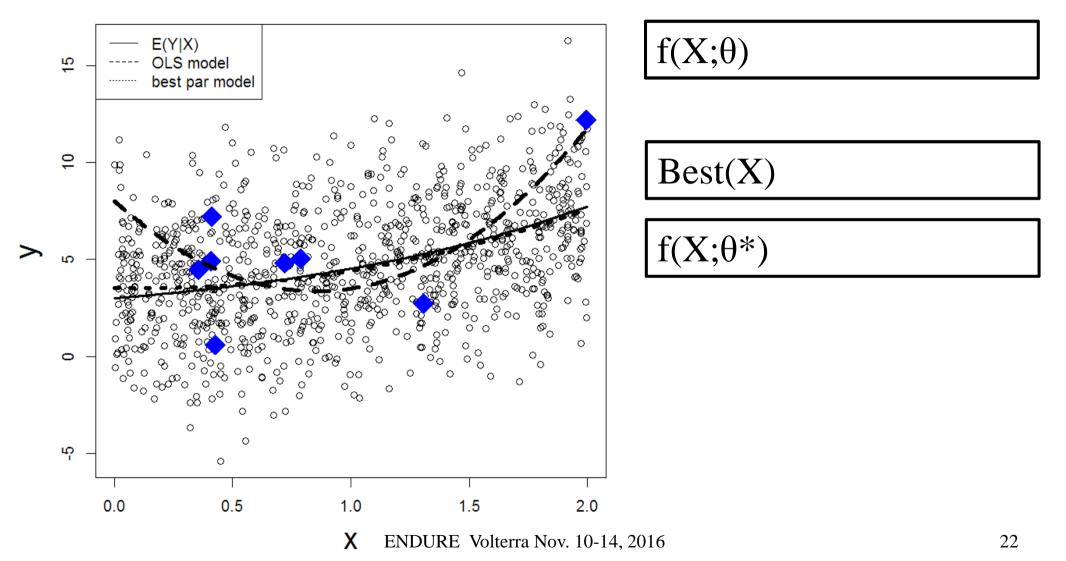
- $f_2(X;\theta)=a+b1*x$ 2 parameters
- $f_3(X;\theta)=a+b1*x+b2*x^2$ 3 parameters
- f₄(X;θ)=a+b1*x+b2*x²+b3*x³
 4 parameters
- f₅(X;θ)=a+b1*x+b2*x²+b3*x³+b4*x⁴ 5 parameters This is the correct model

- For each model:
 - Calculate θ^* (use 1000 data points) and θ (OLS using 8 data points)
 - Calculate MSE= $(1/8)\sum(y_i-f(X_i,\theta_{OLS}))^2$
 - MSE measures fit to data
 - Calculate $MSEP_{\theta^*}=(1/1000)\sum(y_i-f(X_i,\theta^*))^2$
 - Calculate $MSEP_{\theta} = (1/1000)\sum(y_i f(X_i, \theta))^2$

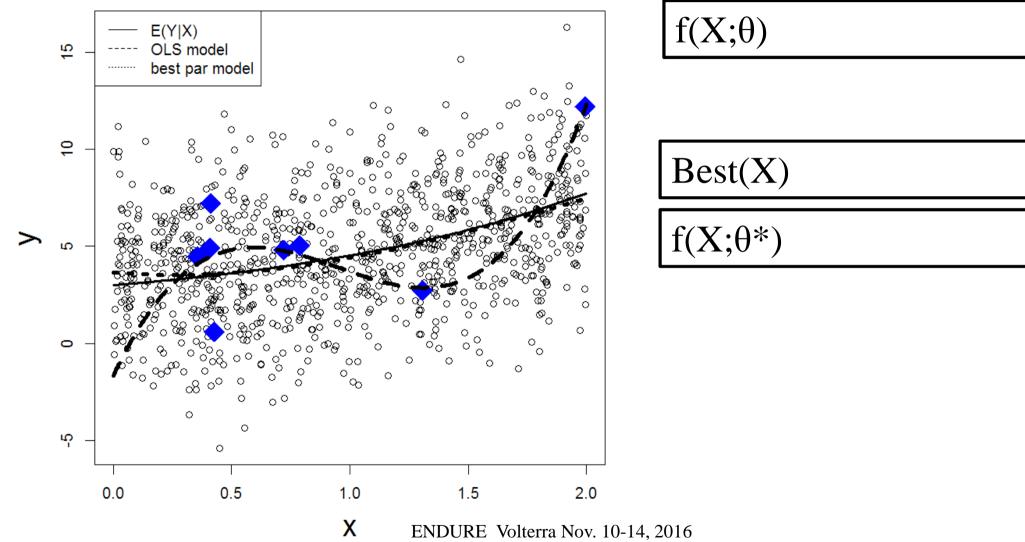
a+bx



a+bx+cx^2



a+bx+cx^2+dx^3



23



Number of parameters	MSEP _{BEST}	MSEP _{0*}	MSEP ₀	MSE
2	9	9	10.9	6.3
3	9	9	12.0	3.9
4	9	9	12.3	3.0
5 (correct)	9	9	61.5	2.7

$$\begin{split} \text{MSEP}_{\text{BEST}} \text{ same for all models (all use same x)} \\ \text{MSEP}_{\theta^*} \text{ very close to } \text{MSEP}_{\text{BEST}} \text{ parameters} \\ \text{MSEP}_{\theta} \text{ increases with extra complexity (more parameters)} \\ \text{Best model is simpler than correct model} \\ \text{MSE can be very different than } \text{MSEP}_{\theta} \end{split}$$

- Best level of complexity?
 - Adding explanatory variables decreases
 MSEP_{TRUE}-MSEP_{BEST}
 - But in general increases $MSEP_{\theta^*}$ - $MSEP_{BEST}$ and $MSEP_{\theta^*}$ - $MSEP_{\theta^*}$ (more functions, more parameters)
 - So include important X, not all X
 - Depends on amount of data

Conclusions

- To evaluate model, define objectives
 Including target population
- 2. Define criteria of evaluation
 - MSEP (or other)
 - Model fixed or uncertain

- 3. Estimate criterion (for fixed model)
 - Using data from target population
 - Using data that weren't used for calibration
- Best model will have some intermediate level of complexity
 - More data allows more complexity

The end