

- Introduction
- Example
- Ordinary least squares
- Ordinary least squares
- Ordinary least squares
- Ordinary least squares
- End



What is model calibration?

 Finding the model parameter values that give the best fit to the data.

Other names for model calibration

- Parameter estimation
 - Statistics
- Inverse problem
 - Engineering
 - Instead of using model with parameter values to calculate response, we use response to calculate parameter values
- Model tuning
 - Climate science (but they also say "calibration")

How to calibrate?

- A system model can be treated as a regression model – it relates outputs to explanatory variables
- Parameter estimation in regression is a major topic in statistics
- So treat model calibration as a statistics problem
 - But a difficult one

Difficulties of system model calibration

- Many parameters
 - There are often many (hundreds) of parameters
- Two sources of information about parameters
 - How to combine those sources?
- Complex data structure
 - Multiple measurements for each individual (e.g. multiple measurement types and/or dates from each field)

- Practical problems
 - Long execution times
- Many explanatory variables
 - Hard to examine behavior of model versus each explanatory variable to see results of calibration

Status of system model calibration

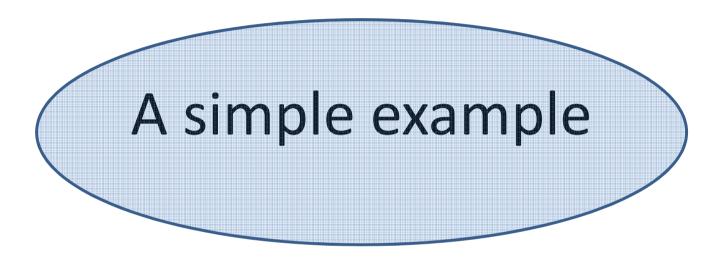
- Calibration is probably the most difficult aspect of modeling.
 - Takes the most time
- And one of the most important
 - Parameter values have a major effect on predictions
 - Calibration determines predictive quality
- And one of the least consensual
 - No agreed on approach

This lecture

- Present an approach appropriate for simple regression
 - Ordinary Least squares (OLS)
 - Show how to do OLS with R (exercise)
 - OLS will usually not be appropriate for system models

So why is this useful?

- Often good to start with OLS as first step
- There are more complex methods that build on OLS
- So OLS is an important part of the system model calibration toolkit



- Calibrate a model for seed weight
 - seed weight versus time (measured in degree days).

1. Define model

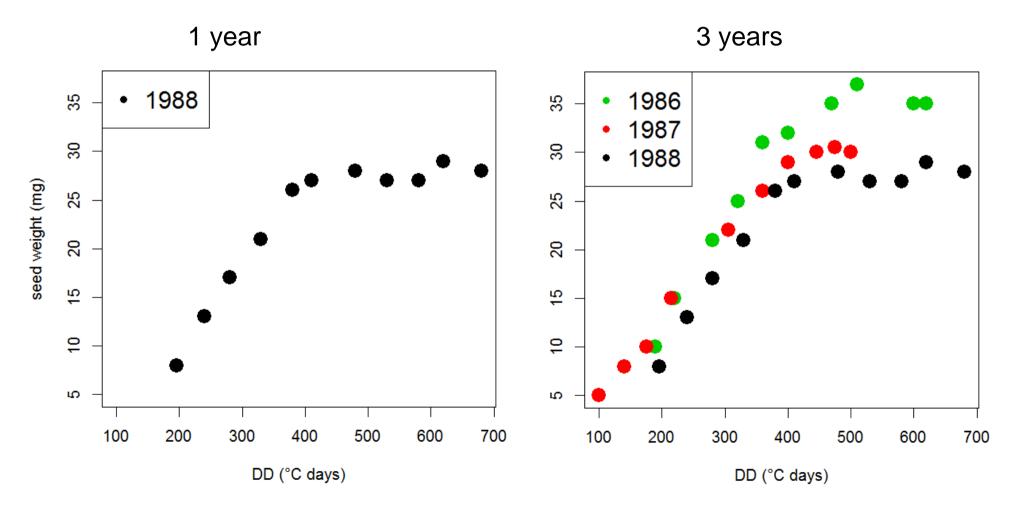
The model for grain filling

$$y^{\text{mod}} = \frac{W}{1 + \exp(B - (c)(DD))}$$

- y is grain weight (mg)
- DD is degree days from anthesis (the explanatory variable)
- W, B, c are parameters, to be estimated

2. Describe data

- A wheat field in Canada, cultivar Neepawa, standard management.
 - 1. In a single year, measurement at 10 dates of seed weight of a random sample of seeds. DD values from daily temperature.
 - 2. Measurements of DD and seed weight in each of 3 years.



ENDURE Volterra Nov. 10-14, 2016

3. Define a criterion of "best fit"

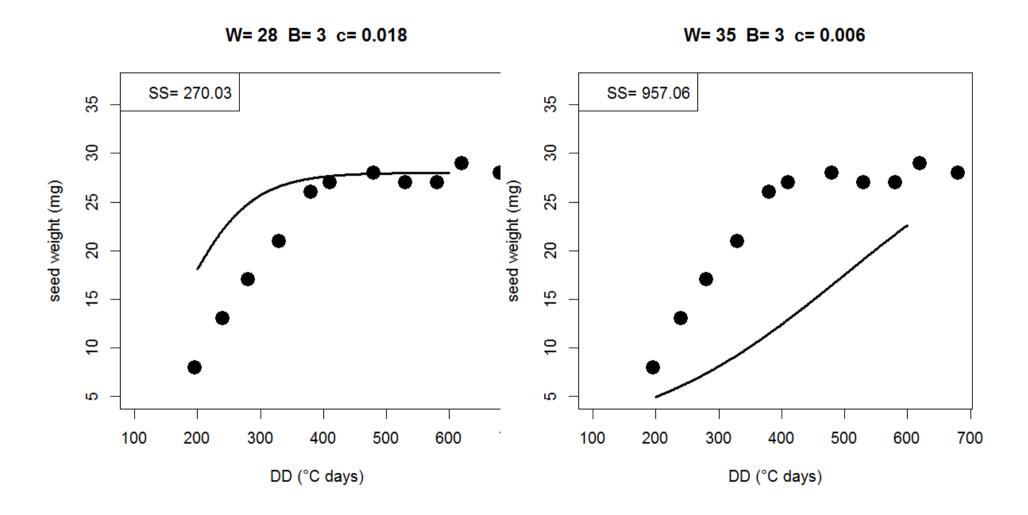
 A common criterion is sum of squared errors (SS)

$$SS = \sum_{i=1}^{n} \{ [y_i - f(X_i; \theta)]^2 \}$$

 Calibration involves finding parameter values that minimize SS.

- This is called the ordinary least squares (OLS) criterion, because the criterion is a simple sum of squares
- The parameters are the OLS parameters

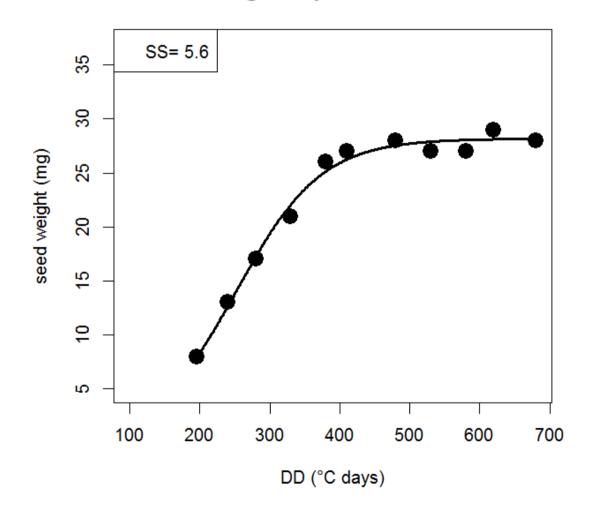
$$\theta_{OLS} = \underset{\theta}{\operatorname{arg\,min}} (1/n) \sum_{i=1}^{n} \left\{ \left[y_i - f(X_i; \theta) \right]^2 \right\}$$



4. Find best fit parameters

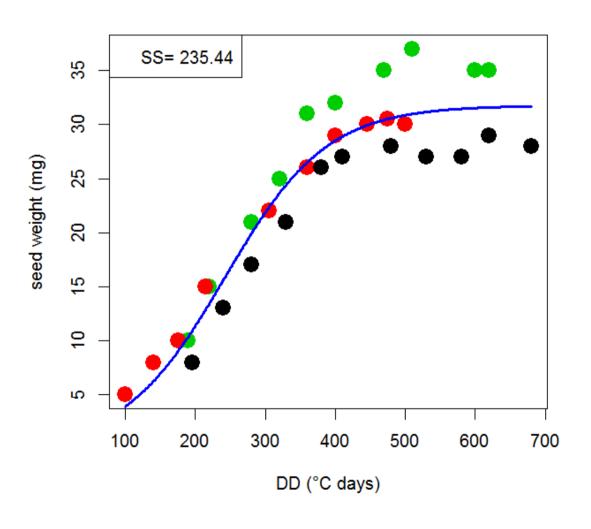
- There are several algorithms, and many software packages
 - The R function "nls" calculates OLS parameters
 - The default algorithm is a Gauss-Newton algorithm
- Can also use trial and error
 - That is a bad idea

Result of nls for a single year of data



ENDURE Volterra Nov. 10-14, 2016

Result of nls for a 3 years of data



5. Examine results

Formula: $y \sim W/(1 + \exp(B - c * DD.aa))$

Parameters:

```
Estimate | Std. Error | value Pr(>|t|) | W 28.171255 | 0.408284 | 69.00 | 2.17e-12 *** | 0.360084 | 11.55 | 2.86e-06 *** | c | 0.016492 | 0.001415 | 11.65 | 2.68e-06 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8364

on 8 degrees of freedom

Number of iterations to convergence: 5

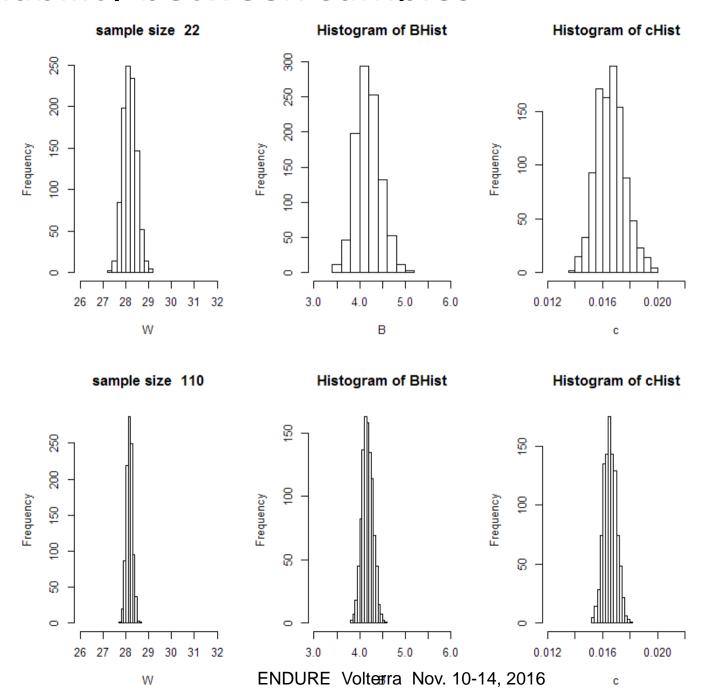
Achieved convergence tolerance: 1.961e-06

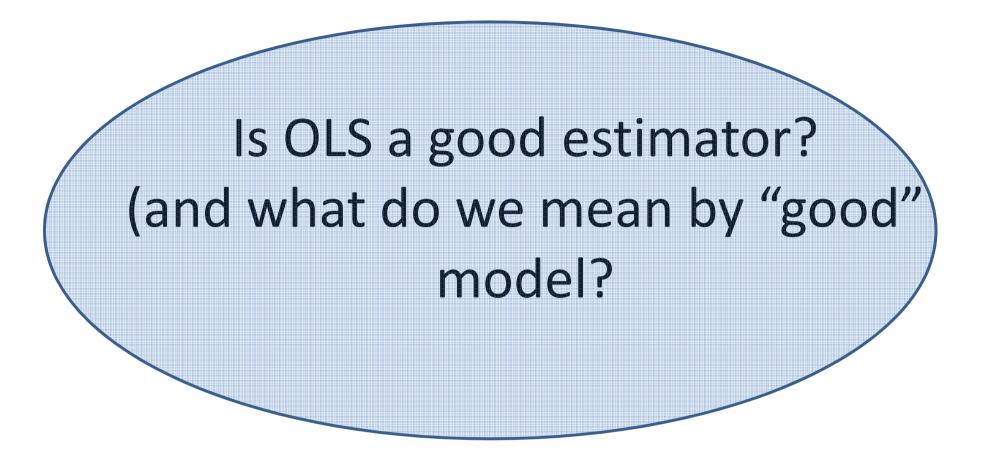
- Also, examine fit of model to data
 - We will see details soon

The estimated parameters depend on the sample

- If we redid the experiment, we would have different data and different estimated parameters
- A good model and a good estimator:
 - The average over samples are the true parameters
 - As sample size increases, less variability between samples

Variability between samples





- OLS is a good estimator if certain assumptions are satisfied
 - Important to test those assumptions

- Write $y=f(X;\theta)+\epsilon$
 - y is true response (e.g. true seed weight)
 - $f(X; \theta)$ is the model.
 - ε is model error (the difference between the model and the true response)
 - We can always write that. No assumptions so far.
 - Assumptions concern ε for the whole population
 - e.g. all samples, all dates in 1988 for seed weight

The assumptions

There is some θ^* such that , for $\theta = \theta^*$

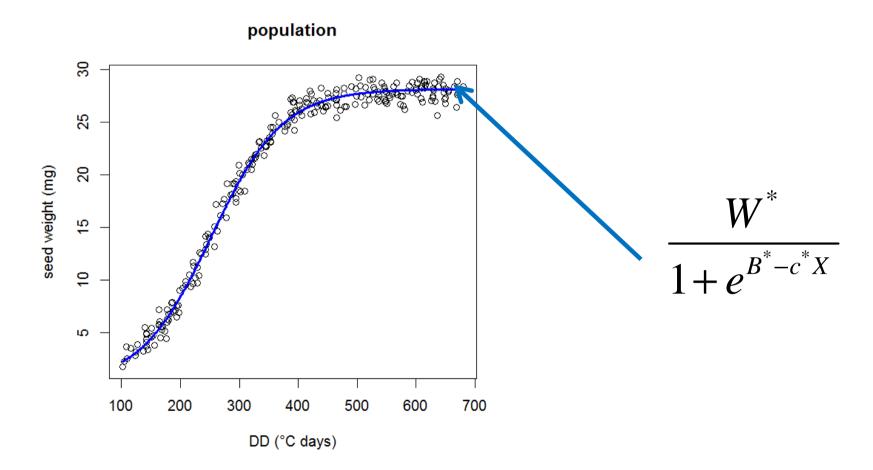
- 1. "Correct model" assumption. $E(\varepsilon)=0$ for all X
- 2. "Homoscedasticity" assumption. $var(\varepsilon)=\sigma^2$ same for all X
- 3. "No correlation" assumption All ε are uncorrelated

If the assumptions are satisfied

- Then as the amount of data tends toward infinity
 - The expectation of the OLS parameters tends toward θ^*
 - The variance of the OLS parameters tends toward0
 - The model tends toward the best possible predictor
- If the assumptions aren't satisfied, we can't ensure these properties

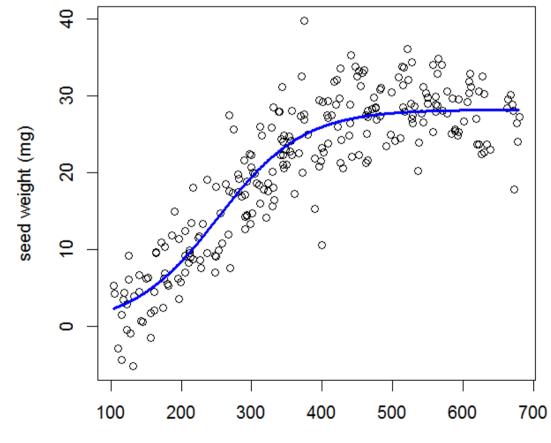
1. "Correct model" assumption

- For some parameter vector θ^* , E(ϵ)=0 for all X.
 - The model $f(X;\theta^*)$ goes through the middle of the points
 - This implies that the model $f(X;\theta^*)$ takes X into account correctly.
 - If it didn't, then Y-f(X; θ^*) would depend on X



- Assumption 1 defines "correct" model
- Assumption 1 also defines "true" parameter values.
 - Parameters such that $E(\varepsilon)=0$ for all X

- The correct or best model is not necessarily a good predictor
- If var(ε) large, the model may go through the middle of the points, but be far from individual points.



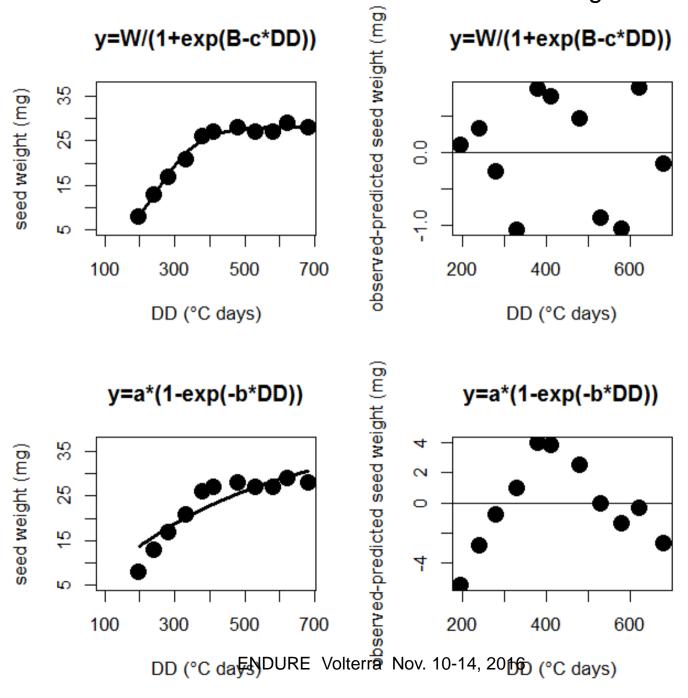
ENDURE Volterra Nov. 10-14, 2016 DD (°C days)

- A "correct model" correctly describes the effect of explanatory variables
- But those explanatory variables may not describe all or even most of the variability in the output
- So a correct model may have small or large errors compared to observations.
 - Depends on choice of explanatory variables.

To test "correct model" assumption

- Do OLS.
- Examine residuals y-f(X; θ_{OLS})
 - Vocabulary: Residual is difference between an observed value and a simulated value, using parameters estimated from data.
 - Model error is difference, when parameter values aren't estimated from data.
- Residuals should show no structure as a function of X
- That's easy for a simple model, not for model with many explanatory variables

Two different models for seed weight



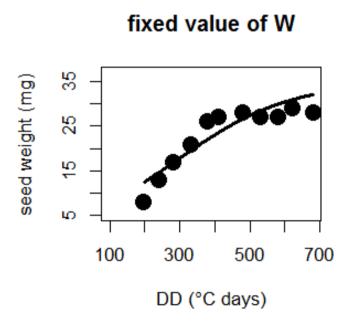
- When is assumption 1 likely to be violated?
 - For complex models with many explanatory variables, where the response to each explanatory variable cannot be thoroughly tested.
 - That is often the case for system models
 - For models with many parameters, where some parameters are fixed (not estimated by calibration)
 - That is often the case for crop models
 - This gives incorrect model, even if form of model is correct

Consequences of violation of assumption 1

- The bad news:
 - Parameters are just empirical adjustment factors. Not the true values.
- The good news:
 - The model tends (with lots of data) toward best model with those equations

Prediction

- $f(X;\theta_{OLS})$ tends toward best predictor of that form
- for the population that is sampled



Assumption 1 and system models

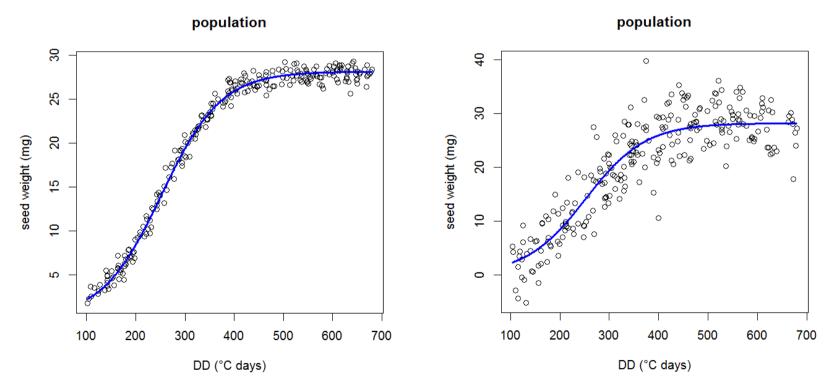
- System models are likely to be incorrect
 - Because can't test response to all explanatory variables
 - Because many parameters fixed at approximate values
- The OLS parameters then don't estimate the true parameter values
 - The OLS parameters are just adjustment factors
- Calibration, on average improves prediction
 - For the sampled population. Beware extrapolation.

What to do?

- For simple empirical models, change the model
 - Choose a function that gives a better fit to the data
- For system models
 - Don't over interpret results.
 - Don't assume parameters estimate true values
 - Be wary of extrapolation beyond data set

2. "Homoscedasticity" assumption

- $var(\varepsilon) = \sigma^2$ for all X
 - The spread of y around $f(X,\theta^*)$ is the same for all X.

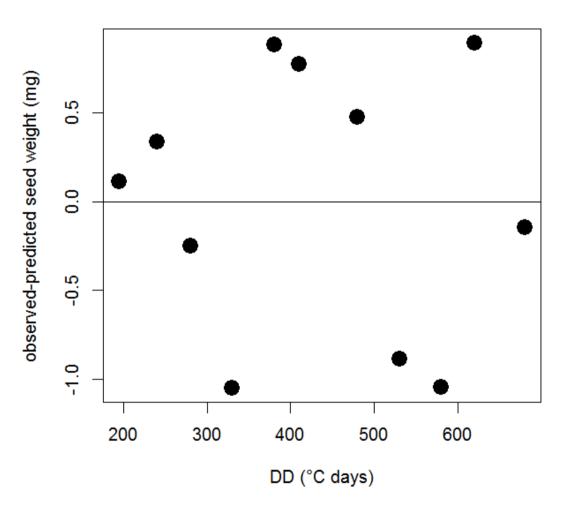


To test homoscedasticity

- Do OLS.
- Examine residuals y-f(X; θ_{OLS})
 - variability of residuals should be about the same for all X
 - Can divide X into zones, do statistical test

 In this example, residuals have similar spread for all values of DD

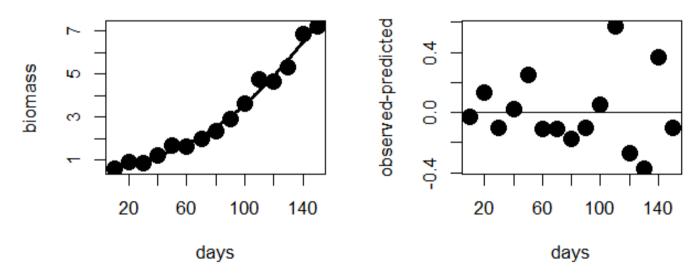
y=W/(1+exp(B-c*DD))



Divide residuals into groups, DD < 420 or DD> 420. Do Bartlett's test for equality of variances. p=0.75.

ENDURE Volterra Nov. 10-14, 2016

- When is assumption 2 likely to be violated?
 - For variables with large range of values
 - Often, residual variance is proportional to size of response
 - System models that describe a growth cycle will often have variables like that. Examples: LAI or biomass in crop models.
 - Residual plot would look like this:



Divide residuals into groups, days ≤80 or days>80.

Do Bartlett's test for equality of variances. p=0.04

ENDURE Volterra Nov. 10-14, 2016

- For model with multiple types of response variable
 - Different responses will have different residual variances
 - System models often have multiple responses
 - Example: If data are for aphid and ladybug population densities, they probably won't have same residual variance.

- Consequences of violation of assumption 2
 - The parameters still tend toward the true parameters (if assumption 1 is satisfied)
 - The model still tends toward the best predictor
 - But the variance for different possible data sets is not minimal
 - Convergence toward best values could be faster
 - The estimated parameter uncertainty is not realistic.

What to do

- Do weighted least squares (WLS).
 - This involves weighting outputs by 1/variance.
 That makes weighted variables homoscedastic
 Then can do OLS

Assumption 2 and system models

- System models are very likely to have heteroscedasticity
 - Responses that vary a lot over time
 - Multiple responses
- Use WLS to estimate parameters

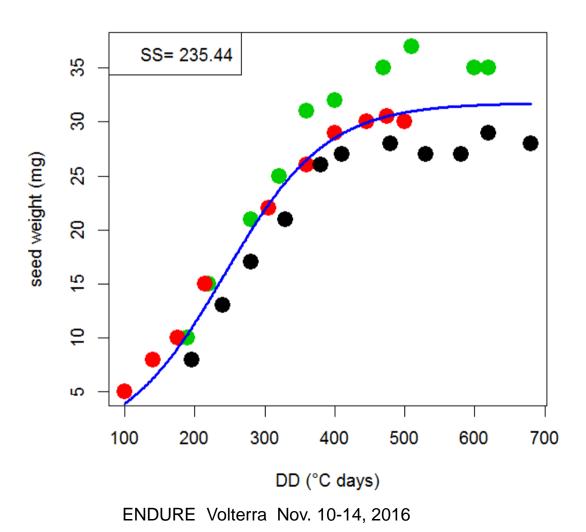
3. "No correlation" assumption

- The error for one data point is unrelated to errors for other data points
- Depends a lot on sampling method
 - If every data point is drawn independently at random from population, this assumption is satisfied by construction
 - If there is hierarchical sampling, correlations may be present (need to check)

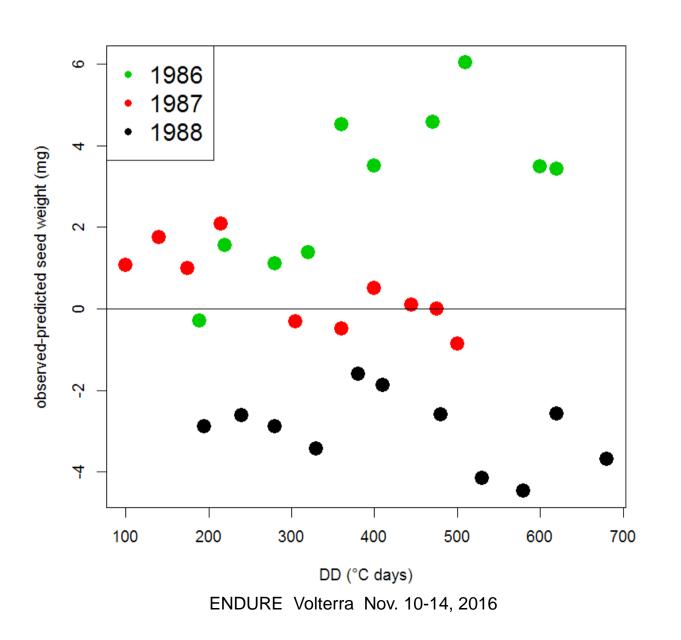
To test "no correlation"

- Consider sampling scheme
 - Does the same individual (e.g. field) contribute multiple measurements?
 - If so, assumption 3 may be violated
- Do OLS.
 - Examine residuals y-f(X; θ_{OLS}), identify by individual
 - The residuals for same individual shouldn't be similar

Errors for the same year are similar i.e.
 there is nonzero correlation between data points for the same year



Residuals from same year are related



- When is assumption 3 likely to be violated?
 - Whenever the sample is the result of other than simple random sampling.
 - Example
 - Multiple measurements of a population in the same field over time
 - If model overestimates in a field, may overestimate at all times (effect of that field)

- Consequences of violation of assumption 3
 - The parameters still tend toward the true parameters (if assumption 1 is satisfied)
 - The model still tends toward the best predictor
 - But the variance for different possible data sets is not minimal
 - Convergence toward best values could be faster
 - The estimated parameter uncertainty is not realistic.
 - It is in general underestimated

What to do

- Do generalized least squares (GLS)
 - This involves doing a transformation of the data
 - That makes transformed variables independent
 - Then can o OLS

Recap Calibration of system models

- Use standard statistical calibration
- Start with OLS, but test assumptions
 - Good chance that model isn't "correct model"
 - Probably have heteroscedasticity
 - Often have correlated errors
 - At least correct for heteroscedasticity and correlation
- Look at variances of estimated parameters
 - If large, there may be large uncertainty in predictions

THE END