# Weed model example using a lattice 

Mark Szalai

## meetup

You should keep in mind


## Weed models

- Weeds are plants
- Process based crop models
- Life cycle
- Competition of plant species can be modelled with lattice models


## Lattice



Cells
State of the cells, here 0 or 1 (TRUE/FALSE)

## Lattice models

- Cells, state of the cells (0 or 1 )
- Discrete in space and discrete in time
- State update depends on the neighbourhood
- 

;
Conway's Game of Life

## Lattice models

- Cells, state of the cells (0 or 1 )
- State update depends on the neighbourhood
- Conway's Game of Life
- Cellular automata (automaton)


## Cellular automata in biology



## Cellular automata

- Simple lattice model
- Cells, state of the cells (0 or 1)
- State update depends on the neighbourhood


## Neighbourhood in the lattice

- Moore (Chebyshev distance)
- von Neumrann (Manhattan distance)


## We can generalise

## Manhattan Distance


$\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$

Chebyshev Distance

$\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$

## Stucture squares vs hexagons

## Civ1 vs Civ5



Prehaps the hexagons have clearer neighbourhood propeties, but programming skills

## Edge of the lattice



Create a torus - no edge effect

## Lattice size

- Rule of thumb: bigger is better
- BUT CPU time
- Sensitivity analysis
-to find a lattice size have no effect on the output


## Moore nhood - R

```
field <- matrix(sample(0:1,64,replace=T),ncol=8)
# this is only 0s and 1s
field
field[5,4] # a particular cell
1:5 # easy way to do a sequence in R
field[4:6,3:5] # can be used in []
```

\# How many 1 s do we have in the Moore nhood of this cell?
sum(field[4:6,3:5])-field[5,4]

## Moore nhood - R

\# Lets assume we have crop cells (C), weed cells (W) and cells without either of this two (else, E)
field2 <- matrix(sample(c("C","W","E"),64, replace=T), ncol=8)
field2
field2[6,3]\# a particular crop cell
field2[5:7,2:4] \# the nhood
\# How many weed cells do we have in Moore nhood of this cell?
sum(field2[5:7,2:4]=="W")

## Toroidal arrangement - R

\# Instead of adding and subtracting we define a new vector of going South (down) in the lattice \#goingS should be (2,3,4,..., n,1)
goingS <- c $(2: 8,1)$
\# and going North (up)
\#goingN should be c(n,1,2,3...,n-1)
goingN <- c(8,1:7)
\#same for East and West
goingW <- goingS
goinge <- goingN

## Toroidal arrangement - R

\# Thus, the number of weed cells in Moore nhood of a cell [8,2]:
sum (field2[c(goingN[8], 8, goingS[8]), c(goingE[2], 2, go ingW[2])]=="W")

