The qualitative modelling IPSIM platform to predict injury profiles

Jean-Noël Aubertot

Summer School 2016

The role of IPM in mitigating pest development under climate changemodelling approaches

Multiple pests

Sciences du vivant Agriculture • Agroalimentaire

Ecole d'ingénieur

IPSIM-WHEAT (Injury Profile SIMulator), a hierarchical, aggregative and qualitative model to predict wheat injury profile as a function of cropping practices, soil, climate and field environment.

Marie-Hélène BONNEME/ROBIN, El Purpan

Jean-Noël AUBERTOT, UMR AGIR, Philippe DEBAEKE, UMR AGIR

Severity of Pest 1 without any other pest -Cropping practices -Cultural control Primary inoculum management -Interaction between crop sequence and tillage -Prophylactic measures -Sowing date: escape - Mitigation through crop status -Sowing rate -Fertilisation -Irrigation -Pruning -Crop growth regulation -Genetic control (cultivar choice, cultivar mixture) -Biological control -Physical control -Chemical control -Pesticide treatment Use of non lethal chemicals (pheromones, repellents) -Soil and climate -Soil L-Climate -Interactions at the territory level -Beneficial sources -Primary inoculum sources -Physical barriers

Hierarchical sub-tree to predict the severity of a single pest without any interaction with other pests (screenshot of the DEXi software).

Overall output attributes of IPSIM: description of an IP (screenshot of the DEXi software). For the sake of simplicity, only 3 pests are represented in this figure. The severity of a given pest is first calculated independently by IPSIM as if no other pest was present. The aggregated severity of a given pest is then calculated by taking into account the combined effects of all other pests. This is done by considering the theoretical effect of one pest on another according to five levels: high facilitation, low facilitation, no effect, low reduction, high reduction.

EXAMPLE OF IPSIM SUB-MODEL DEVELOPMENT WITH DEXI...

http://www-ai.ijs.si/MarkoBohanec/dexi.html

Attribute

Final incidence of eyespot Effects of cropping practices

Primary inoculum management: interaction between crop sequence and tillage

Preceding crop

-Pre-preceding crop

-Tillage after harvest of the previous crop

Tillage after harvest of the pre-previous crop

Escape: effects of the sowing date

-Mitigation through crop status

Cultivar choice

-Level of N fertilisation

Sowing rate

Chemical control: use of fungicide

Effects of soil and climate

-Soil

-Climate

-Autumn/winter

-Spring

-Interactions with the territory

-Beneficial sources

-Primary inoculum sources

Step 1: definition of the structure for the model

Attribute	Scale
Final incidence of eyespot	100%; 80-100 %; 60-80 %; 40-60 %; 20-40 %; <i>0-20 %; 0%</i>
Effects of cropping practices	Favourable; Moderately favourable; Unfavourable
-Primary inoculum management: interaction between crop sequence and tillage	Favourable; Moderately favourable; Unfavourable
Preceding crop	Host; Risk amplifying non-host; Non host
Pre-preceding crop	Host; Risk amplifying non-host; Non host
Tillage after harvest of the previous crop	Non-inversion tillage; Inversion tillage
└─Tillage after harvest of the pre-previous crop	Non-inversion tillage; Inversion tillage
Escape: effects of the sowing date	Early sowing; Normal sowing date; Late sowing
Mitigation through crop status	Favourable; Moderately favourable; Unfavourable
Cultivar choice	Very susceptible to susceptible; Moderetely susceptible; Quite to very resistant
Level of N fertilisation	Excess level; Balanced level
Sowing rate	High; Normal; Low
└─Chemical control: use of fungicide	None; One
Effects of soil and climate	Very favourable; Favourable; Unfavourable
Soil	Favourable; Neutral
L-Climate	Very favourable; Favourable; Unfavourable
-Autumn/winter	Very favourable; Favourable; Unfavourable
└─Spring	Very favourable; Favourable; Unfavourable
Interactions with the territory	Favourable; Neutral
-Beneficial sources	Normal; Important
└─Primary inoculum sources	Important; Normal

Step 2: definition of the attribute scales

Factor	Direction of the effect	Intensity of the effect	Impact on eyespot development	References
Tillage	+/-	++	Contradictory results. For some authors, reduced soil tillage decreased eyespot infection. For others, eyespot was often more severe after ploughing than after non-inversion tillage.	[1-14, 29, 40]
Preceding and pre- preceding crop	+	++	Preceding and pre-preceding host crops are known to favour eyespot. However, the interaction between tillage and the crop sequence has to be taken into account.	[4, 9, 14-21, 29, 40, 59]
Sowing date	+	++	Eyespot has always been reported to be more severe in early sown crops.	[4, 14, 15, 17, 20-21, 40]
N fertilisation rate	+	+	High nitrogen availability generally favoured the disease. However these results were questioned.	[15, 20]
Sowing rate	+	+	Prevalence was increased by high plant density and/or low shoot number per plant.	[15, 17, 20]
Cultivar choice	+	+++	The use of varieties with resistance could obviate the need for fungicide.	[4, 21, 22]
Cultivar mixture	0	0	No significant difference was found between the disease level in mixtures and the mean of disease level of the mixture components in pure stands.	[23-25]
Climate	+	++	Eyespot strongly depends on climate. Infections require periods of at least 15 h with T° between 4°C and 13°C and HR>80% (from October to April).	[13, 20, 26-29]

Step 3: definition of the aggregating tables using international literature and expert knowledge

	Cultivar choice	Level of N fertilisation	Sowing rate	Mitigation through crop status
1	Very susceptible to susceptible	Excess level	High	Favourable
2	Very susceptible to susceptible	Excess level	Normal	Favourable
3	Very susceptible to susceptible	Excess level	Low	Favourable
4	Very susceptible to susceptible	Balanced level	High	Favourable
5	Very susceptible to susceptible	Balanced level	Normal	Favourable
6	Very susceptible to susceptible	Balanced level	Low	Favourable
7	Moderetely susceptible	Excess level	High	Moderately favourable
8	Moderetely susceptible	Excess level	Normal	Moderately favourable
9	Moderetely susceptible	Excess level	Low	Moderately favourable
10	Moderetely susceptible	Balanced level	High	Moderately favourable
11	Moderetely susceptible	Balanced level	Normal	Moderately favourable
12	Moderetely susceptible	Balanced level	Low	Moderately favourable
13	Quite to very resistant	Excess level	High	Unfavourable
14	Quite to very resistant	Excess level	Normal	Unfavourable
15	Quite to very resistant	Excess level	Low	Unfavourable
16	Quite to very resistant	Balanced level	High	Unfavourable
17	Quite to very resistant	Balanced level	Normal	Unfavourable
18	Quite to very resistant	Balanced level	Low	Unfavourable

Step 3: definition of the aggregating tables using international literature and expert knowledge

Simulation examples

Option	Organic system	High input system	
. Final incidence of eyespot	20-40 %	60-80 %	
Effects of cropping practices	Unfavourable	Moderately favourable	
Primary inoculum management: interaction between crop sequence and tillage	Unfavourable	Favourable	
Preceding crop	Non host	Host	
Pre-preceding crop	Non host	Host	
Tillage after harvest of the previous crop	Inversion tillage	Non-inversion tillage	
Tillage after harvest of the pre-previous crop	Inversion tillage	Non-inversion tillage	
Escape: effects of the sowing date	Late sowing	Early sowing	
Mitigation through crop status	Unfavourable	Favourable	
Cultivar choice	Quite to very resistant	Very susceptible to susceptible	
Level of N fertilisation	Balanced level	Balanced level	
Sowing rate	High	Normal	
Chemical control: use of fungicide	None	One	
Effects of soil and climate	Very favourable	Very favourable	
Soil	Favourable	Favourable	
Climate	Very favourable	Very favourable	
Autumn/winter	Very favourable	Very favourable	
Spring	Very favourable	Very favourable	
Interactions with the territory	Neutral	Neutral	
Beneficial sources	Normal	Normal	
Primary inoculum sources	Normal	Normal	

Use of PESTOBSERVER to design a simple model to represent the impact of the yearly weather on brown rust risk on wheat

Potential severity o f brown rust on wheat (DGAL, 1996-2010)

Use of the climatic SAFRAN database (MétéoFrance)

Development of simple weatherbased models (CART procedure in this example)

Assessment of the quality of prediction of IPSIM models

% 5-10%	1222 02222000		Simulated			
<i>x</i> 5 10 <i>x</i>	10-20%	20-50%	50-100%	Total		
2 37	15	6	0	1480		
	0.862	0.345	0	85.1		
16	5	0	1	87		
0.920	0.287	0	0.0575	5.00		
0 15	13	2	0	59		
7 0.862	0.747	0.115	0	339		
11	15	16	3	63		
9.632	0.862	0.920	0.172	3.62		
0 0.287	9	30	3	51		
	0.517	1.72	0.172	2.93		
8 84 4.83	57	54	7	1740		
	3.28	3.10	0.402	100.		
2277 5 4 7 7 7	37 2.13 16 0.920 15 0.862 11 0.632 5 0.287 3 84 4.83	37 15 2.13 0.862 16 5 0.920 5 15 0.287 15 0.362 15 0.362 11 0.532 0.362 5 0.287 9 0.532 9 0.517 8 84 57 4.83 57 3.28 84 57	37 15 6 2.13 15 0.862 0.345 16 5 0 0 0.920 5 0.287 0 15 13 2 0.862 0.747 2 11 0.532 15 0.862 16 0.920 5 5 9 0.517 30 1.72 30 8 84 4.83 57 3.28 54 3.10	37 2.13 15 0.862 6 0.345 0 0 16 0.920 5 0.287 0 0 1 0.0575 16 0.920 5 0.287 0 0 1 0.0575 15 0.862 13 0.747 2 0.115 0 		

\bigcirc

- Lack of precision
- Subjectivity when defining aggregating tables
- No explicit representation of underlying mechanisms
- Static models
- Threshold effects when translating quantitative input variables into qualitative variables

- Lack of precision
- Combination of expert knowledge, existing models and data
- Fair predictive quality considering that no calibration was performed
- **Transparent**
- Very easy to develop and to present
- Great for communicating and teaching
- Better vertical and horizontal integrations in IPM

