
Enhancing model reuse: shifting the focus from

frameworks to components in the development

of biophysical simulation systems

Marcello Donatelli

Research Center for Agriculture and Environment

Bologna, Italy

Visiting Scholar Seminar
November 10, 2015

marcello.donatelli@entecra.it

Outline

� Modelling frameworks

� Model reuse

� Imperative vs. declarative

� From models to viewvers

� BioMA applications

� Conclusions

marcello.donatelli@entecra.it 2

Model development and reuse

� The demand of model tools to perform integrated evaluation
of agro-ecological systems has further increased in the last
decade.

� New requirements for simulation capabilities have emerged,
and the capability to timely transfer research results to
modelling tools is key to meet the demand of various
stakeholders.

� The major obstacle to develop such simulation systems has
been the fragmented availability of modelling resources,
partly due to technical bottlenecks.

� Extension of modelling resources by adding modules, and
replacing or changing existing ones to accommodate new
modules, has not been at reach except by duplication via full
recoding.

marcello.donatelli@entecra.it 3

The generic modelling problem

Spatially explicit

data and model

parameters

Modelling
solution

Water rise
Percolation

Rainfall
Evapotranspiration

CROP

SOIL

Runoff

Soil loss

irrigation
tillage
fertilization
pesticides
herbicides
harvest/planting

Management

Leaching

Volatilization

marcello.donatelli@entecra.it 4

...and models to simulate fungal diseases,

insects pests, agro-chemicals, products quality…

Agronomists, Soil scientists,
Geographers, Meteorologists, ...

Here it is my
WST

Where do I find
Air.Temperature.Max.Daily?

I need the
LeafAreaIndex

I can produce
AirTempMIN

What about
VAP_PRES?

MeanSoilTemperature
is a daily, monthly, or an
annual average?

Εχω χάσει τον
μπούσουλα

Capito?

!@#$%#$%^? Slide courtesy of I. Athanasiadis

marcello.donatelli@entecra.it 5

Model frameworks

� Since many years model frameworks have represented a

substantial step forward with respect to monolithic

implementations of biophysical models.

� The separation of algorithms from data, the reusability of

services such as I/O procedures, have brought a solid

advantage in the development of simulation systems.

� However, the diffusion of such frameworks beyond the

groups developing them, as model development

environment, can be considered modest.

� The reusability of models has also proved to be modest; a

model unit for a given framework is not used in other

frameworks.

marcello.donatelli@entecra.it 6

Model frameworks (cont.)

� Current implementations of modeling solution vary from

structured Fortran code to modular realizations using C++, or

via memory-managed object-oriented languages (C#, Java).

� Even if the technology available would allow much more

functionalities of what is being exploited in most cases,

software framework have been constantly improved in

terms of quality; still, the problem of model reuse has been

largely unsolved.

� The focus on frameworks has made software architects at

least partially overlooking on the requirements of reusability

per se of model units.

marcello.donatelli@entecra.it 7

Why reuse is important?

� Avoiding duplication per se is not the main issue; instead,

time and quality of modelling solution development are

limiting factors:

� Reusing a model unit to explore and compare options during model

development shortens the time of delivery, allowing also comparative

testing.

� It may also allow using expertise in different domains via dicrete units

of high quality.

� Some duplication can be considered acceptable in the final

version of new tools, but not to explore options during

model development.

marcello.donatelli@entecra.it 8

Reuse of what?

� The words “model reuse” can have different meanings;

within biophysical modelling, a “model” can be:

� A process-based representation of either a single process or of a

compartment;

� A whole modelling solution allowing the simulation of the

system of interest.

� The point in reuse however is not the granularity of the

model unit, as in model development;

� The key difference is if either the discrete unit is to be

reused in workflows, or is composed to iterate with other

model units over the execution of time-steps.

marcello.donatelli@entecra.it 9

Asynchronous or synchronous?

� If the reuse is of modelling solutions, adapters are built

following the requirements of a specific software framework

either to enable links in workflows, or for ensemble runs.

� The “model” units run asynchronously

� Incompatibilities of binaries can be overcome

� In the case of iteration across model units over time the

requirements for an effective reuse increase:

� Key features in the architecture of model units are required

� Binaries incompatibility across models units becomes an

insurmountable obstacle in practical terms

� Model development requires being able to modify and link

model units working synchronously at run time.

marcello.donatelli@entecra.it 10

New requirements

� Also, some new high level requirements emerged for
modelling frameworks:

� To increase the transparency of the modelling solutions being
built compared to legacy code available, for each of the
modelling solutions being built;

� To increase the traceability of performance of each modelling
unit used in modelling solutions;

� To involve teams without requiring them to commit to a whole
infrastructure they would not own.

� To maximize both reusability and accessibility, an option is to
develop a simulation system based on framework-
independent components, both for model and for tool
components.

marcello.donatelli@entecra.it 11

Outline

� Modelling frameworks

� Model reuse

� Imperative vs. declarative

� From models to viewers

� BioMA applications

� Conclusions

marcello.donatelli@entecra.it 12

Imperative or declarative implementation?

� Declarative implementation via a mark-up language is

appealing because it does not bind to either a specific

architecture or software platform, and sharing declarative units

is potentially easier.

� A model represented declaratively can be used by a code layer

to produce an imperative implementation, which runs either

autonomously or via specific tools, potentially in multiple

platforms.

� However, the advantage attributed to declarative

implementation implies that the major obstacle in model reuse

is due to the difficulty in reproducing the algorithms to link.

marcello.donatelli@entecra.it 13

Imperative or declarative … (cont.)

� Instead, other features of the software system such as I/O

flexibility, data adequacy control, iteration and integration,

may be the limiting factors in bridging from prototypes to

operational systems in biological systems simulation.

� So far, the vast majority of model developers has preferred

imperative implementation, considering the declarative

implementation as another demanding layer with no clear

added value.

� Declarative implementation may still have a role, but it does

not appear to be the unique solution to model reuse.

marcello.donatelli@entecra.it 14

What next?

� The adoption of a software framework to implement models

implies committing large resources, and impacts on specific

production environments.

� The current situation from one side shows no model reuse

other than, at most, whole modelling solutions in

asynchronous implementations using wrappers.

� Shared libraries of model units are de facto not available.

� There are however options to build a common model base

which accounts for the constraints summarized above, at the

same time fostering model reuse.

marcello.donatelli@entecra.it 15

Outline

� Modelling frameworks

� Model reuse

� Imperative vs. declarative

� From models to viewers

� BioMA applications

� Conclusions

marcello.donatelli@entecra.it 16

FROM MODELS TO VIEWERS

The high level architecture of a software modelling environment

marcello.donatelli@entecra.it 17

From models to viewers

� Model Layer: fine
grained/composite models
implemented in components

� Composition Layer: modeling
solutions from model components

� Configuration Layer: adapters
for advanced functionalities in
controllers

� Applications: from console to
advanced MVC implementations

� DevTools: code generators, UI
components and applications

marcello.donatelli@entecra.it 18

From models to applications

marcello.donatelli@entecra.it 19

THE MODEL LAYER

fine grained/composite models implemented in components

marcello.donatelli@entecra.it 20

Defining the domain

� Domain classes contain the definition of the domain being

modelled

� Variables are properties in domain classes which are

homogeneous for content: states, rates, exogenous etc.

� Domain classes are input/output objects for model classes

� Each quantity is defined as name, definition, units and

max/min/default values

� The same type of attributes is also used for parameters

21

Each model is implemented as a stateless class which:

� Implements the definition of its own parameters;

� Implements the test of pre- and post-conditions;

� May use other classes sharing the same interface;

� Exposes the list of its inputs, outputs, simulation options,

and parameters;

� Provides scalable logging;

� Implements default (Euler’s) integration.

Model units

22

Types of model units implementation

marcello.donatelli@entecra.it 23

Example Strategy

Thermal time GDD

Evapotranspiration
Penman-Monteith

Actual Biomass
RUE

Actual Biomass
Min(RUE, TRE)

Alternate
models

Example CompositeStrategy

Thermal time GDD

Photoperiod

Crop Phenology

Example ContextStrategy

Evapotranspiration
Penman-Monteith

Evapotranspiration
Penman

Evapotranspiration

logic to select model
at run time

Model components

� A component is built including model units.

� Model components built with the BioMA architecture:

� Are reusable across frameworks;

� Have a semantically explicit interface;

� Can be extended both for data and models;

� Include the definition of their own parameters;

� Allow running pre- and post-conditions;

� Have a scalable logging.

� They are a way to share knowledge while providing

operational software units, to be used alone or via

composition.

marcello.donatelli@entecra.it 24

Crop model units: the example of Wofost

marcello.donatelli@entecra.it 25

marcello.donatelli@entecra.it 26

THE COMPOSITION LAYER

modelling solutions from model components

marcello.donatelli@entecra.it 27

� The composition layer must include:

� Time handling, hence allowing for calls to models at the time

step chosen for communication across components in the

modeling solution;

� Provide events handling, in this case we refer to actions which

are triggered not at all time steps.

� The composition layer may include:

� Integration services;

� Data services (in principle excluding persistence, which is part of

the configuration, hence context specific);

� Visual tools can be developed to assist creating code units to be

compiled and used by applications.

The Composition Layer

28

� Allow re-use of components data-types;

� Allow transfer of modeling/run options to/from the higher
level (Configuration level, Application);

� Require simple implementation of adapters of components to
an instance of the layer;

� Allow units conversion;

� Implement an initialization and finalization method;

� Have its own scalable logging;

� Allow discovering (via reflection)

� links between components, and on the quantities involved;

� the components used;

� inputs, outputs, and parameters of modeling solutions;

� modeling options made available as part of specific modeling solutions.

Requirements

29

� Modelling solutions implemented according to the

requirements of the Composition Layer are framework-

independent;

� They expose information and functionalities that maximize

the ease to create an adapter to different platforms,

including (but not exclusively) BioMA (e.g. compatible with

APSIM);

� They allow creating automatically a large part of

documentation;

� Their code can be built almost entirely via code generators.

Modelling solutions

30

Adding a component for extreme events impact

Development of the

ExtremeEvents

component

Modelling solutions with/without

the ExtremeEvents

component

marcello.donatelli@entecra.it 31

marcello.donatelli@entecra.it 32

marcello.donatelli@entecra.it 33

THE CONFIGURATION LAYER

Interfacing modelling solutions to graphical user interfaces

34

� The data to run a modelling solution can originate from various

deployment environments, for example using a database, xml

files, or remote web services. Data persistence can also be

diversified.

� A specific view on data given by an application requires specific

information to allow user interaction according to the use cases

needed.

� All these ways of providing a modeling solution and a GUI with

needed data are abstracted in the concept of a configuration; this

concept is addressed in the Configuration Layer.

� Also, the configuration layer must expose handles to run a

modeling solution iteratively, as it is requested for instance in

sensitivity analysis or when running an optimization.

The Configuration Layer

35

� Allow providing values for items constituting the

configuration.

� Verify items validity with respect to the environment of

execution.

� Save a configuration for later reloading.

� Create recursive configuration structures, in case one of the

items constituting the configuration needs in turn to be

configured. An implication of this requirement is that not only

a modeling solution must own a configuration, but also the

non-trivial components constituting the configuration itself.

� Support callback functions when the status of a configuration

changes, to refresh views attached in a Model View Controller

architecture.

Requirements

36

� Different couples view-controller can be developed based on

the Configuration Layer, hence allowing the development of

different applications targeted to specific uses.

� The BioMA case, as an example, uses a controller to handle

two user interfaces («Spatial» and «Site»).

� An adapter for a modelling solution to an instance of the

Configuration may or may not origin from the Composition

Layer; legacy code can be wrapped to represent a

benchmark for testing the reimplementation of specific

modelling solutions.

View - controllers

37

Outline

� Modelling framework

� Model reuse

� Imperative vs. declarative

� From models to viewvers

� BioMA applications

� Conclusions

marcello.donatelli@entecra.it 38

BioMA applications

� BioMA applications have been used for different
research projects, many under climate change
scenarios (https://en.wikipedia.org/wiki/BioMA):
� weather datasets for biophysical simulation

� impact on crop production and adaptation in Europe

� soil pathogens

� plant pathogen impact on production

� corn borers

� modelling solutions comparison at sub-model level

� impact on crop production in Latin America

� fungal infections

� functions to estimate soil hydraulic properties

� quality of agricultural products

marcello.donatelli@entecra.it 39

BioMA Deployments

marcello.donatelli@entecra.it 40

Wofost,
CropSyst,
Canegro
…

The importance of the IPR model

� A modelling framework which explicitly targets model

and software re-use implies:

� Multi-actors work within a team/institution

� Multi-team work across institutions

� When concepts as reuse and model sharing are considered,

there is concern on IPR and also on “losing the identity” built

over years and communities, on specific realizations of

modelling systems

� A clear intellectual property rights model is consequently

needed

41

The IPR model

� Working with a model framework requires substantial

resources, hence a medium-term perspective;

� No institution will do it on a code base of core components

which are owned by someone else and which have code not

accessible;

� BioMA is adopting a MIT version with open source access to

core components in GitHub;

� A consortium is being developed to steer the branch of the

official version of components, and also to share the code of

development tools.

marcello.donatelli@entecra.it 42

Conclusions

� A modelling system based on model implemented at fine

granularity maximizes both the ease of testing alternate

modelling approaches and the capability of extending to

other processess or modelling domains.

� Targeting reuse requires matching specific requirements,

also to provide functionalities which go beyond the mere

output�input communication between modules.

� Working with a modular, transparent system is not only a

technical mean to improve efficiency; it directly impacts on

improving analytical capabilities on system performance.

43

� BioMA neither is a simulation model nor proposes a specific

model; instead, it is an open platform to make available in

operational software the results of research on biophysical

modeling in agriculture.

� We make available BioMA as a platform, but also, and of no

lesser importance, as a loose collection of model objects and

software tools reusable in other modelling frameworks.

Conclusions (2)

Thank you

marcello.donatelli@entecra.it 45

https://en.wikipedia.org/wiki/BioMA

