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1. Objective & main principles



Data assimilation aims at improving model 
performance by assimilating data into the model 



Two approaches

• Parameter estimation
– Data are used for estimating model parameters
– See the courses on parameter estimation

• Filter and smoother
– Data are used to update model state variables
– Sequential approach (update done each time a 

data is available
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Wheat biomass simulation

Model 
simulation

Biomass 
measurement



Filtering for improving wheat biomass 
simulation

Hypothesis 1: Low level of uncertainty Hypothesis 2: High level of uncertainty



Hypothesis 1: Low level of uncertainty Hypothesis 2: High level of uncertainty

Small correction of the 
simulated biomass

Strong correction of the 
simulated biomass

Filtering for improving wheat biomass 
simulation



Hypothesis 1: Low level of uncertainty Hypothesis 2: High level of uncertainty

Sequential updating of the simulated wheat biomass 
leading to an improved prediction of final biomass

Filtering for improving wheat biomass 
simulation



Main principles of data assimilation (1)

• Level of correction depends on 
– Error of measurements
– Uncertainty in model predictions

• Low error of measurement
+ High model uncertainty à Strong correction

• High error of measurement
+ Low model uncertainty à Small correction



Main principles of data assimilation (2)

• Filtering: Updating state variable sequentially in time

Simulation t Simulation t+1 Simulation t+2 Simulation t+3
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Main principles of data assimilation (3)

• Smoothing: Updating state variable using all observations

Simulation t Simulation t+1 Simulation t+2 Simulation t+3

Observation t Observation t+1 Observation t+2 Observation t+3



Main principles of data assimilation (3)

• Smoothing: Updating state variable using all observations

Updated Updated Updated Updated
simulation t simulation t+1 simulation t+2 simulation t+3

Simulation t Simulation t+1 Simulation t+2 Simulation t+3

Observation t Observation t+1 Observation t+2 Observation t+3



Summary

• Filter and smoother are two tools for 
updating dynamic state variables

• State variables are updated sequentially in 
time using data

• Measurement and model errors are both 
taken into account



Summary
• The use of filtering and smoothing is currently 

limited in agriculture and environmental 
science

• The increase in detection and transmission 
capability makes this approach attractive for 
improving predictions of system models. 

• Due to the recent development of new 
algorithms and of efficient tools, such as those 
available in R, the application of filtering and 
smoothing is now relatively easy.  
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Model specification

Two equations

• Observation equation
Relates an observation collected at time t to the model 
state variable(s) 

• System equation
Describes the dynamic behavior of the state variables. 
It relates the values of the vector of the state variables  
at time t to the values at time t-1 



Observation equation

Yt = f Zt,Xt
(y),δ,εt( )

State variable 
at time t

Input variable 
at time t

Fixed 
parameters

Random term 
accounting for the 
imperfection of the 

relationship



System equation

Zt = g Zt−1,Xt
(z),θ,ηt−1( )

State variable 
at time t

State variable 
at time t-1

Input variable 
at time t

Fixed 
parameters

Random term 
describing model 

error



Model specification

• Observation equation

• System equation

Yt = f Zt,Xt
(y),δ,εt( )

Zt = g Zt−1,Xt
(z),θ,ηt−1( )



Example 1: Random walk model

• Observation equation

• System equation

Yt = Zt +εt

Zt = Zt−1 +ηt−1

εt ~ N 0,σε
2( )

ηt−1 ~ N 0,ση
2( )



Yt
Zt

Example 1: Random walk model

Wheat yield data in Greece (FAO)



Example 2: Autoregressive model with
covariates

Tmin in December Tmin in June

Wheat yield in Eure



Example 3: Soil water content

• Observation equation
The amount of water in the soil is measured several 
times every year. 

• System equation
The water balance has a single state variable, the 
amount of water at the beginning of the day in a 
grassland. 



Example 3: Soil water content

!

Observation

Simulations of 
the water 
balance model 

Updated 
simulations



Example 4: Nonlinear population model

• This model is a dynamic model of a weed infestation of 
blackgrass (A. myosuroides) and it damage effect on wheat 
yield. It is based on weed model of Munier-Jolain et al. (2002) 
that included classical ecological concepts (survival, 
reproduction, fluxes between classes) often used to described 
population dynamic.

• The system is represented by 4 dynamic state variables: weed 
density at emergence (d, plants.m-2), seed production (S, 
seeds.m-2), surface seed bank after tillage (SSBa, seeds.m-2), 
depth seed bank after tillage (DSBa, seeds.m-2).



Example 4: Nonlinear population model

Zt =

dt
SSBt
DSBt
St
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Four dynamic state variables



Example 4: Nonlinear population model

• Observation equation
Measurements Yt correspond to count data (number of weed 
plants in a plot)
Measurements collected in a given plot were related to the 
weed density  simulated by the model for the same plot using a 
Poisson probability density 

• System equation
The values of the four state variables Zt at year t are related to 
their values Zt-1 at year t-1 using a complex nonlinear function



Example 4: Nonlinear population model

Observation

Weed model 
simulations

Updated simulations



• Use of two equations
– Observation equation
– System equation

• Very flexible
– Data: continuous, binary, count
– One or several state variables

• From simple to complex models
– Linear Gaussian models
– Nonlinear models

Summary
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Filter and smoother using Gaussian 
dynamic linear models



• Observation equation

• System equation

Yt = f Zt,Xt
(y),δ,εt( )

Zt = g Zt−1,Xt
(z),θ,ηt−1( )

f is linear 

g is linear 

εt is Gaussian

ηt−1 is Gaussian 

Gaussian linear model



Gaussian linear model

• Observation equation

• System equation

Yt = FZt +εt

Zt =GZt−1 +ηt−1



Example 1: Random walk model

• Observation equation

• System equation

Yt = Zt +εt

Zt = Zt−1 +ηt−1

εt ~ N 0,σε
2( )

ηt−1 ~ N 0,ση
2( )

f = identity 

g = identity 



Kalman filter using Gaussian linear 
models

• Expected value and variance before update at time t

• Expected value and variance after update at time t

E Zt Y1:t−1( ) V Zt Y1:t−1( )

Y1:t−1 = Y1,...,Yt−1( )

E Zt Y1:t( ) V Zt Y1:t( )

Y1:t = Y1,...,Yt−1,Yt( )



Kalman smoother using Gaussian 
linear models

• Expected value and variance before update at time t

• Expected value and variance after update at time t

E Zt Y1:t−1( ) V Zt Y1:t−1( )

Y1:t−1 = Y1,...,Yt−1( )

E Zt Y1:t( ) V Zt Y1:t( )

Y1:t = Y1,...,Yt−1,Yt( )



Example 1: Random walk model 
(t=1)

• Observation equation

• System equation

Y1 = Z1 +ε1

Z1 = Z0 +η0

ε1 ~ N 0,σε
2( )

η0 ~ N 0,ση
2( )



Example 1: Random walk model
Kalman filter (t=1)

E Z1 |Y1( ) = Z0 +K Y1 − Z0( )

K =
ση
2

ση
2 +σε

2

V Z1 |Y1( ) = 1−K( )ση
2



Z0 =10

ση
2 =10

Example 1: Random walk model
Kalman filter (t=1)
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Example 1: Random walk model
Kalman filter (t=1)
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Example 1: Random walk model
Kalman filter (t=1)
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2 = 3

Y1 =13
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Example 1: Random walk model
Kalman filter (t=1)



Example 1: Random walk model 
(t=1, …, N)

• Observation equation

• System equation

Yt = Zt +εt

Zt = Zt−1 +ηt−1

εt ~ N 0,σε
2( )

ηt−1 ~ N 0,ση
2( )



Example 1: Random walk model 
(t=1, …, N)



E Zt |Y1:t( ) = E Zt−1 |Y1:t−1( )+K Yt −E Zt−1 |Y1:t−1( )( )

K =
ση
2

ση
2 +σε

2

V Zt |Y1:t( ) = 1−K( )ση
2

Example 1: Random walk model 
(t=1, …, N)
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ση
2 = 0.007 σε

2 =1

Filter

Smoother



Parameter estimation for Gaussian 
linear models

• Results of the Kalman filter depends on key 
parameters
– Variance of model errors
– Variance of the observation equation

• These parameters can be estimated from data
–Maximum likelihood
– Bayesian method



Example 1: Random walk model 
(t=1, …, N)
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Example 1: Random walk model 
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Filter

Smoother

Arbitrary parameter values



ση
2 = 0.014 σε

2 = 0.07

Filter

Smoother

Maximum likelihood estimation



Example 2: Autoregressive model with
covariates

Tmin in December Tmin in June

Wheat yield in Eure



Yt = Zt +εt εt ~ N 0,σε
2( )

!" = $!"%& + ( + )"%& ηt−1 ~ N 0,ση
2( )

Model 1

Model 2

!" = $!"%& + *&+&," + *-+-," + ( + )"%&



Results obtained with the R MARSS package
modelY<-list(B="unconstrained")

t_Y<-MARSS(Yield,model=modelY)

X_m<-t(cbind(X_1,X_2))

model_YX<-list(B="unconstrained", C="unconstrained", c=X_m, Q=matrix(0.00579))
t_XY<-MARSS(Yield,model=model_YX)

t_XY
plot(Time, Yield, type="l", ylab="Yield in the Eure departement (t ha-1)")
lines(Time,t_XY$states, col="red")
lines(Time,t_XY$states-1.96*t_XY$states.se, col="blue", lty=2)

lines(Time,t_XY$states+1.96*t_XY$states.se, col="blue", lty=2)

MODEL 1 MODEL 2



MODEL 1



MODEL 2



Summary

• Kalman filter and smoother can be applied 
using dynamic linear gaussian models

• These models can handle a great diversity of 
situations (see practical session)

• They can be implemented using R (see 
practical session)
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Filter and smoothers using 
nonlinear models

• Nonlinear models are frequent in 
environmental science

• Kalman filter and smoother cannot be directly 
applied to nonlinear models

• Several methods are available for this type of 
model

Yt ≠ FZt +εt Zt ≠GZt−1 +ηt−1



Methods for nonlinear models

• Linearization (extended Kalman filter)

• Dynamic regression

• Methods based on Monte Carlo simulations
– Ensemble Kalman filter
– Particle filter



Linearization can be applied to the following
type of model:

• Observation equation

• System equation

Linearization

Yt = FZt +εt

Zt = g Zt−1,Xt,θ( )+ηt−1



Linearization
Zt = g Zt−1,Xt,θ( )+ηt−1Linearization of

The standard Kalman filter is applied to 



Methods for nonlinear models

• Linearization (extended Kalman filter)

• Dynamic regression

• Methods based on Monte Carlo simulations
– Ensemble Kalman filter
– Particle filter



Dynamic regression
• The output of the nonlinear model as input of 

a regression model

Nonlinear model à Dynamic linear model

• Application of the standard Kalman filter



Dynamic regression



Dynamic regression



Example 3: Soil water content

!

Observation

Simulations of 
the water 
balance model 

Updated 
simulations



Methods based on Monte Carlo 
simulations

• These methods use the original nonlinear model 
directly

• They require a large number of model simulations 

• Random terms need to be inserted in the nonlinear 
model equations

• Several methods exist:
– Ensemble Kalman filter
– Particle filter



Example 4: Nonlinear population model
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Zt = g Zt−1,Xt ,θ( )



Example 4: Nonlinear population model

Yt
dt



Example 4: Nonlinear population model

• System equation

~Gamma(λ, λ)       

Zt = g Zt−1,Xt−1,θ( )×ηt

η t  =

ηt
(1)

ηt
(2)

ηt
(3)

ηt
(4)
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Example 4: Nonlinear population model
• Observation equation

• System equation

~Gamma(λ, λ)       

Yt = Ytk
k=1

n

∑ P Yt dt( ) =
exp −dt × s×n( )× dt × s×n( )

Yt

Yt !

Zt = g Zt−1,Xt−1,θ( )×ηt η t  =

ηt
(1)

ηt
(2)

ηt
(3)

ηt
(4)
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10,000 Monte Carlo simulations with the Weed model



Example 4: Nonlinear population model

Yt
dt

t =6



Conclusion (1)
• Data assimilation is a powerful tool for updating dynamic 

models

• Filtering and smoothing allow one to combine a model and 
measurements in useful ways, taking into account the 
uncertainties in each. 

• Filtering is useful for estimating sequentially in time the 
values of one or several state variables, whereas smoothing 
can be used to estimate past values of state variables using all 
available measurements.   



Conclusion (2)

• To implement these methods, it is necessary 
to define the system models using two 
different equations; an observation equation 
(relating observation to state variables) and a 
system equation (describing the dynamic of 
the state variables). 



• Filtering and smoothing use these equations 
to calculate the expected values and variances 
of the state variables conditionally to one or 
several measurements.  

• For linear Gaussian models, the expected 
values and variances can be computed 
analytically and the dlm R package makes the 
calculations very accessible. 

Conclusion (3)



• For nonlinear models, a first option is to 
approximate the original model by a linear 
one and then to apply the standard Kalman 
filter and smoother. 

• Another option is to use the original nonlinear 
model and to approximate the state variable 
expected values and variances with special 
algorithms based on Monte Carlo simulations. 

Conclusion (4)


