How to estimate a causal effect?

David Makowski
INRAE/Université Paris-Saclay

What is an individual causal effect?

A: Treatment variable (either 0 or 1, here)
Y : Outcome for an individual

The treatment A has a causal effect on an individual's outcome Y if

$$
Y^{a=1} \neq Y^{a=0}
$$

for the individual

What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)
Y : Rat alive, Rat dead (0, 1)

The glyphosate has a causal effect on the rat survival if

$$
Y^{a=1} \neq Y^{a=0}
$$

for the individual rat

What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)
Y : Rat alive, Rat dead (0, 1)

The glyphosate has a causal effect on the rat survival if

$$
Y^{a=1} \neq Y^{a=0}
$$

for the individual rat
This is the same rat!

What is an average causal effect?

There is an average causal effect in the population if:

$$
\mathrm{E}\left[Y^{a=1}\right] \neq \mathrm{E}\left[Y^{a=0}\right]
$$

Causal effect of adverse weather conditions on crop production

- A: Adverse weather condition at a certain period (0 or 1)
- Y : Crop yield in a site-year, e.g., wheat field in Saclay in 2023

The weather condition A has a causal effect on an individual's outcome Y if

$$
Y^{a=1} \neq Y^{a=0}
$$

for the crop field considered

Causal effect of adverse weather conditions on crop production

- A: Adverse weather condition at a certain period (0 or 1)
- Y : Crop yield in a site-year
- Population: All wheat site-years in France

There is an average causal effect of the adverse weather condition on wheat yield in France if:

$$
\mathrm{E}\left[Y^{a=1}\right] \neq \mathrm{E}\left[Y^{a=0}\right]
$$

Causation vs. Association

Risk of confounding

Risk of confounding

Risk of confounding

Risk of confounding

$E(Y \mid$ Low temp, Water excess $)$
$=\mu_{0}-\alpha_{W}-\beta_{L}$

Risk of confounding

Randomized controlled trial (RCT)

Randomized controlled trial (RCT)

Randomized controlled trial (RCT)

Why RCT is not always possible

- Not always possible to apply the treatment A
- Not always easy to randomize
- Costly
- Limited sample sizes

Pyrenees-Atlantiques

Confounding factors

Adverse weather event
(Drought, Frost, Excess of water...)
Crop yield in a site-year

Inverse probability weighting

$$
\mathrm{E}\left[Y^{a}\right]=\mathrm{E}\left[\frac{I(A=a) Y}{f[A \mid L]}\right]
$$

mean of Y, reweighted by the IP weight $W^{A}=1 / f[A \mid L]$
in individuals with treatment value $A=a$.

Inverse probability weighting

$$
E\left[Y^{\text {Drought }}\right]=E\left[\frac{I(\text { Drought }) Y}{P(\text { Drought } \mid L)}\right]
$$

$Y=$ Crop yield in a site-year

$A=$ Drought

L=Confounding factors (Irrigated/Rainfed, Temperature, Soil depth...)

Implementation

$$
\hat{E}\left[\frac{I(\text { Drought }) Y}{P(\text { Drought } \mid L)}\right]=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i} I\left(A_{i}=\text { Drought }\right)}{\hat{P}\left(A_{i}=\operatorname{Drought} \mid L_{i}\right)}
$$

Develop a model $\hat{P}\left(A_{i}=\operatorname{Drought} \mid L_{i}\right):$ «Propensity score»

- Logistic regression (glm)
- Machine learning for classification (random forest, gradient boosting etc.)

Implementation

Run the model over all data and compute:

$$
\hat{E}\left[\frac{I(\text { Drought }) Y}{P(\text { Drought } \mid L)}\right]-\hat{E}\left[\frac{I(\text { No drought }) Y}{1-P(\text { Drought } \mid L)}\right]
$$

Implementation

Run the model over all data and compute:

$$
\hat{E}\left[\frac{I(\text { Drought }) Y}{P(\text { Drought } \mid L)}\right]-\hat{E}\left[\frac{I(\text { No drought }) Y}{1-P(\text { Drought } \mid L)}\right]
$$

The probabilities of drought and no drought should be non-zero!

Variants: Matching

- Compute $P($ Drought $\mid L)$ for all data
- Create pairs of values of Y based on the calculated probabilities
$>$ Select an observed value Y_{d} with drought and $P($ Drought $\mid L)=P_{d}$
$>$ Select an observed value $Y_{n d}$ without drought and $P($ Drought $\mid L)=P_{n d}$
$>$ Match the two values $\left(Y_{d}, Y_{n d}\right)$ if P_{d} and $P_{n d}$ are « similar»
$>$ Repeat the procedure for all the observed Y
- Compute the mean difference of Y based on the pairs
- Test the statistical significance of the difference

Variants: Matching

- Compute $P($ Drought $\mid L)$ for all data
- Create pairs of values of Y based on the calculated probabilities
$>$ Select an observed value Y_{d} with drought and $P($ Drought $\mid L)=P_{d}$
$>$ Select an observed value $Y_{n d}$ without drought and $P(\operatorname{Drought} \mid L)=P_{n d}$
$>$ Match the two values ($Y_{d}, Y_{n d}$) if P_{d} and $P_{n d}$ are «similar »
$>$ Repeat the procedure for all the observed Y
Many different ways
- Compute the mean difference of Y based on the pairs to define «similar»!
- Test the statistical significance of the difference

Cf next talk

Standardization

$$
\mathrm{E}\left[Y^{a}\right]=\sum_{l} \mathrm{E}[Y \mid A=a, L=l] \operatorname{Pr}[L=l]
$$

Standardization

$$
\begin{aligned}
E\left[Y^{\text {Drought }}\right] & =E[Y \mid \text { Drought }, \text { Irrigated }] P(\text { Irrigated }) \\
& +E[Y \mid \text { Drought }, \text { Rainfed }] P(\text { Rainfed })
\end{aligned}
$$

A=Drought
L=Irrigated/Rainfed

Implementation

$$
\begin{aligned}
E\left[Y^{\text {Drought }}\right] & =E[Y \mid \text { Drought }, L=\text { Irrigated }] P(L=\text { Irrigated }) \\
& +E[Y \mid \text { Drought }, L=\text { Rainfed }] P(L=\text { Rainfed })
\end{aligned}
$$

Step 1: Develop a model $g($ Drought, No drought, L) computing $\hat{E}[Y \mid \operatorname{Drought}, L]$

- Linear regression
- GAM
- Machine learning (regression) etc.

Step 2: Run the model two times over all data, with Drought and No droughts, successively
Step 3: Compute the average difference

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(\text { Drought }, L_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} g\left(\text { No drought }, L_{i}\right)
$$

Double robust

- Combine Inverse probability weighting and standardization
- Rely on two models

$$
\begin{aligned}
& \hat{P}(A \mid L)=f(L) \\
& \hat{E}[Y \mid A, L]=g(A, L)
\end{aligned}
$$

- Unbiased if one of the two models is unbiased

Double robust

$$
\hat{E}\left[Y^{a=1}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=1, L_{i}\right)+\frac{A_{i}}{f\left(L_{i}\right)}\left(Y_{i}-g\left(A=1, L_{i}\right)\right)\right]
$$

Double robust

$$
\hat{E}\left[Y^{a=1}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=1, L_{i}\right)+\frac{A_{i}}{f\left(L_{i}\right)}\left(Y_{i}-g\left(A=1, L_{i}\right)\right)\right]
$$

Error of prediction of Y

Probability of $A=1$ estimated
as a function of L

Double robust

$$
\begin{aligned}
& \hat{E}\left[Y^{a=1}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=1, L_{i}\right)+\frac{A_{i}}{f\left(L_{i}\right)}\left(Y_{i}-g\left(A=1, L_{i}\right)\right)\right] \\
& \hat{E}\left[Y^{a=0}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=0, L_{i}\right)+\frac{1-A_{i}}{1-f\left(L_{i}\right)}\left(Y_{i}-g\left(A=0, L_{i}\right)\right)\right]
\end{aligned}
$$

A	L_{1}	...	L_{K}	Y
0 (no drought)	Irrigated		Temperature $=15$	9.2
0 (no drought)	Rainfed		Temperature $=21$	7.2
1 (drought)	Irrigated		Temperature $=11$	8.5
0 (no drought)	Irrigated		Temperature $=24$	7.9
1 (drought)	Rainfed		Temperature=14	7.1
...	\ldots
0 (no drought)	Rainfed		Temperature $=19$	6.8
$\xrightarrow{\square}$				
$\operatorname{glm}\left(\mathrm{A}^{\sim} \mathrm{L} 1+\mathrm{L} 2+\ldots+\mathrm{LK}\right.$, family=binomial) randomForest(A~L1+L2+...+LK)				

A	L_{1}	\ldots.	L_{K}	Y
0 (no drought)	Irrigated		Temperature=15	9.2
0 (no drought)	Rainfed		Temperature=21	7.2
$\mathbf{1}$ (drought)	Irrigated		Temperature=11	8.5
0 (no drought)	Irrigated		Temperature=24	7.9
1 (drought)	Rainfed		Temperature=14	7.1
\ldots	\ldots	\ldots	\ldots	\ldots
0 (no drought)	Rainfed		Temperature=19	6.8

A	L_{1}	\ldots	L_{K}	Y	g	f
O (no drought)	Irrigated		Temperature=15	9.2	8.1	0.25
O (no drought)	Rainfed		Temperature=21	7.2	7.9	0.87
1 (drought)	Irrigated		Temperature=11	8.5	8.6	0.45
0 (no drought)	Irrigated		Temperature=24	7.9	7.1	0.11
1 (drought)	Rainfed		Temperature=14	7.1	6.9	0.88
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
O (no drought)	Rainfed		Temperature=19	6.8	7.2	0.34

A	L_{1}	\ldots	L_{K}	Y	g	f
0 (no drought)	Irrigated		Temperature=15	9.2	8.1	0.25
0 (no drought)	Rainfed		Temperature=21	7.2	7.9	0.87
1 (drought)	Irrigated		Temperature=11	8.5	8.6	0.45
0 (no drought)	Irrigated		Temperature=24	7.9	7.1	0.11
1 (drought)	Rainfed		Temperature=14	7.1	6.9	0.88
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
0 (no drought)	Rainfed		Temperature=19	6.8	7.2	0.34

$$
\begin{aligned}
& \hat{E}\left[Y^{a=1}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=1, L_{i}\right)+\frac{A_{i}}{f\left(L_{i}\right)}\left(Y_{i}-g\left(A=1, L_{i}\right)\right)\right] \\
& \hat{E}\left[Y^{a=0}\right]=\frac{1}{n} \sum_{i=1}^{n}\left[g\left(A=0, L_{i}\right)+\frac{1-A_{i}}{1-f\left(L_{i}\right)}\left(Y_{i}-g\left(A=0, L_{i}\right)\right)\right]
\end{aligned}
$$

Drought (less than 20mm in July)

Maize yield in the French department ($\mathrm{t} \mathrm{ha}{ }^{-1}$)

Estimated effect of drought $=-0.27 t h a^{-1}(0.03)$

Summary

- Method 1: Inverse probability weighting
$>$ Require one model: the propensity score (probability of the treatment conditionally to the confounding factors)
>Variants: matching
- Method 2: Standardization
$>$ Require one model predicting the outcome as a function of the treatment and the confounding factors
- Method 3: Double robust estimator
$>$ Require two models but... more robust

Perspectives (2024)

Implement several variants of this approach to assess the effect of different types of weather events:

- Different types of drought
- Frost
- Heat stress etc.

Different crops, different countries

Assess the sensitivity of the results to the estimation method

References

- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman \& Hall/CRC.
- Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. (2011) Doubly robust estimation of causal effects. Am J Epidemiol. 173(7):761-7. doi: 10.1093/aje/kwq439.
- Lee BK, Lessler J, Stuart EA. (2010) Improving propensity score weighting using machine learning. Stat Med. 29(3):337-46. doi: 10.1002/sim. 3782.
- Zhong Y, Kennedy EH, Bodnar LM, Naimi AI. (2021). AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects. Am J Epidemiol. 190(12):2690-2699. doi: 10.1093/aje/kwab207

