How to estimate a causal effect?

David Makowski
INRAE/Université Paris-Saclay

What is an individual causal effect?

A: Treatment variable (either 0 or 1, here)

Y: Outcome for an individual

The treatment A has a causal effect on an individual's outcome Y if

$$Y^{a=1} \neq Y^{a=0}$$

for the individual

What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)

Y: Rat alive, Rat dead (0, 1)

The glyphosate has a causal effect on the rat survival if

$$Y^{a=1} \neq Y^{a=0}$$

for the individual rat

What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)

Y: Rat alive, Rat dead (0, 1)

The glyphosate has a causal effect on the rat survival if

$$Y^{a=1} \neq Y^{a=0}$$

for the individual rat

This is the same rat!

What is an average causal effect?

There is an average causal effect in the population if:

$$\mathrm{E}[Y^{a=1}] \neq \mathrm{E}[Y^{a=0}]$$

Causal effect of adverse weather conditions on crop production

- A: Adverse weather condition at a certain period (0 or 1)
- Y: Crop yield in a site-year, e.g., wheat field in Saclay in 2023

The weather condition A has a causal effect on an individual's outcome Y if

$$Y^{a=1} \neq Y^{a=0}$$

for the crop field considered

Causal effect of adverse weather conditions on crop production

- A: Adverse weather condition at a certain period (0 or 1)
- Y: Crop yield in a site-year
- Population: All wheat site-years in France

There is an average causal effect of the adverse weather condition on wheat yield in France if:

$$E[Y^{a=1}] \neq E[Y^{a=0}]$$

Causation vs. Association

 $E(Y|Irrigated, Drought) - E(Y|Rained, No drought) = -\alpha_D + \beta_I$

Bias

 $E(Y|Low\ temp, Water\ excess) - E(Y|Avg\ temp, No\ water\ excess) = -\alpha_W(-\beta_L)$

Randomized controlled trial (RCT)

Randomized controlled trial (RCT)

Randomized controlled trial (RCT)

Why RCT is not always possible

- Not always possible to apply the treatment A
- Not always easy to randomize
- Costly
- Limited sample sizes

Confounding factors

Adverse weather event (Drought, Frost, Excess of water...)

Crop yield in a site-year

Inverse probability weighting

$$\mathrm{E}\left[Y^{a}
ight] = \mathrm{E}\left[rac{I\left(A=a
ight)Y}{f\left[A|L
ight]}
ight]$$

mean of Y, reweighted by the IP weight $W^A=1/f\left[A|L\right]$ in individuals with treatment value A=a

Inverse probability weighting

$$E[Y^{Drought}] = E\left[\frac{I(Drought)Y}{P(Drought|L)}\right]$$

Y=Crop yield in a site-year

A=Drought

L=Confounding factors (Irrigated/Rainfed, Temperature, Soil depth...)

$$\widehat{E}\left[\frac{I(Drought)Y}{P(Drought|L)}\right] = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i I(A_i = Drought)}{\widehat{P}(A_i = Drought|L_i)}$$

Develop a model $\hat{P}(A_i = Drought|L_i)$: « Propensity score »

- Logistic regression (glm)
- Machine learning for classification (random forest, gradient boosting etc.)

Run the model over all data and compute:

$$\widehat{E}\left[\frac{I(Drought)Y}{P(Drought|L)}\right] - \widehat{E}\left[\frac{I(No\ drought)Y}{1 - P(Drought|L)}\right]$$

Run the model over all data and compute:

$$\widehat{E}\left[\frac{I(Drought)Y}{P(Drought|L)}\right] - \widehat{E}\left[\frac{I(No\ drought)Y}{1 - P(Drought|L)}\right]$$

The probabilities of *drought* and *no drought* should be non-zero!

Variants: Matching

- Compute P(Drought|L) for all data
- Create pairs of values of Y based on the calculated probabilities
 - \triangleright Select an observed value Y_d with drought and $P(Drought|L) = P_d$
 - \triangleright Select an observed value Y_{nd} without drought and $P(Drought|L) = P_{nd}$
 - \triangleright Match the two values (Y_d, Y_{nd}) if P_d and P_{nd} are « similar »
 - Repeat the procedure for all the observed Y
- Compute the mean difference of Y based on the pairs
- Test the statistical significance of the difference

Variants: Matching

- Compute P(Drought|L) for all data
- Create pairs of values of Y based on the calculated probabilities
 - \triangleright Select an observed value Y_d with drought and $P(Drought|L) = P_d$
 - \triangleright Select an observed value Y_{nd} without drought and $P(Drought|L) = P_{nd}$
 - \triangleright Match the two values (Y_d, Y_{nd}) if P_d and P_{nd} are « similar »
 - Repeat the procedure for all the observed Y
- Compute the mean difference of Y based on the pairs
- Test the statistical significance of the difference

Many different ways to define « similar »!

Cf next talk

Standardization

$$\mathrm{E}\left[Y^a\right] = \sum_l \mathrm{E}\left[Y|A=a,L=l\right] \, \mathrm{Pr}\left[L=l\right]$$

Standardization

```
E[Y^{Drought}] = E[Y|Drought,Irrigated]P(Irrigated) + E[Y|Drought,Rainfed]P(Rainfed)
```

A=DroughtL=Irrigated/Rainfed

$$E[Y^{Drought}] = E[Y|Drought, L = Irrigated] P(L = Irrigated) + E[Y|Drought, L = Rainfed] P(L = Rainfed)$$

Step 1: Develop a model $g(Drought, No\ drought, L)$ computing $\hat{E}[Y|Drought, L]$

- Linear regression
- GAM
- Machine learning (regression) etc.

Step 2: Run the model two times over all data, with Drought and No droughts, successively

Step 3: Compute the average difference

$$\frac{1}{n}\sum_{i=1}^{n}g(Drought,L_{i})-\frac{1}{n}\sum_{i=1}^{n}g(No\ drought,L_{i})$$

- Combine Inverse probability weighting and standardization
- Rely on two models

$$\widehat{P}(A|L) = f(L)$$

$$\widehat{E}[Y|A,L] = g(A,L)$$

• Unbiased if one of the two models is unbiased

$$\widehat{E}[Y^{a=1}] = \frac{1}{n} \sum_{i=1}^{n} \left[g(A=1, L_i) + \frac{A_i}{f(L_i)} \left(Y_i - g(A=1, L_i) \right) \right]$$

as a function of L

$$\widehat{E}[Y^{a=1}] = \frac{1}{n} \sum_{i=1}^{n} \left[g(A=1, L_i) + \frac{A_i}{f(L_i)} \left(Y_i - g(A=1, L_i) \right) \right]$$

$$\widehat{E}[Y^{a=0}] = \frac{1}{n} \sum_{i=1}^{n} \left[g(A=0, L_i) + \frac{1 - A_i}{1 - f(L_i)} \left(Y_i - g(A=0, L_i) \right) \right]$$

Α	L ₁		L _K	Y
0 (no drought)	Irrigated		Temperature=15	9.2
0 (no drought)	Rainfed		Temperature=21	7.2
1 (drought)	Irrigated		Temperature=11	8.5
0 (no drought)	Irrigated		Temperature=24	7.9
1 (drought)	Rainfed		Temperature=14	7.1
		•••		
0 (no drought)	Rainfed		Temperature=19	6.8

$$\widehat{P}(A|L) = f(L)$$

glm(A~L1+L2+...+LK, family=binomial) randomForest(A~L1+L2+...+LK)

Α	L ₁		L _K	Y
0 (no drought)	Irrigated		Temperature=15	9.2
0 (no drought)	Rainfed		Temperature=21	7.2
1 (drought)	Irrigated		Temperature=11	8.5
0 (no drought)	Irrigated		Temperature=24	7.9
1 (drought)	Rainfed		Temperature=14	7.1
		•••		
0 (no drought)	Rainfed		Temperature=19	6.8

$$\widehat{E}[Y|A,L] = g(A,L)$$

Im(Y~L1+L2+...+LK)
randomForest(Y~L1+L2+...+LK)

A	L ₁		L _K	Y	g	f
0 (no drought)	Irrigated		Temperature=15	9.2	8.1	0.25
0 (no drought)	Rainfed		Temperature=21	7.2	7.9	0.87
1 (drought)	Irrigated		Temperature=11	8.5	8.6	0.45
0 (no drought)	Irrigated		Temperature=24	7.9	7.1	0.11
1 (drought)	Rainfed		Temperature=14	7.1	6.9	0.88
		•••				
0 (no drought)	Rainfed		Temperature=19	6.8	7.2	0.34

A	L ₁	•••	L _K	Y	g	f
0 (no drought)	Irrigated		Temperature=15	9.2	8.1	0.25
0 (no drought)	Rainfed		Temperature=21	7.2	7.9	0.87
1 (drought)	Irrigated		Temperature=11	8.5	8.6	0.45
0 (no drought)	Irrigated		Temperature=24	7.9	7.1	0.11
1 (drought)	Rainfed		Temperature=14	7.1	6.9	0.88
0 (no drought)	Rainfed		Temperature=19	6.8	7.2	0.34

$$\widehat{E}[Y^{a=1}] = \frac{1}{n} \sum_{i=1}^{n} \left[g(A = 1, L_i) + \frac{A_i}{f(L_i)} \left(Y_i - g(A = 1, L_i) \right) \right]$$

$$\widehat{E}[Y^{a=0}] = \frac{1}{n} \sum_{i=1}^{n} \left[g(A=0, L_i) + \frac{1 - A_i}{1 - f(L_i)} \left(Y_i - g(A=0, L_i) \right) \right]$$

Estimated effect of drought= -0.27 t ha⁻¹ (0.03)

Summary

- Method 1: Inverse probability weighting
 - ➤ Require one model: the propensity score (probability of the treatment conditionally to the confounding factors)
 - ➤ Variants: matching
- Method 2: Standardization
 - ➤ Require one model predicting the outcome as a function of the treatment and the confounding factors
- Method 3: Double robust estimator
 - ➤ Require two models but... more robust

Perspectives (2024)

Implement several variants of this approach to assess the effect of different types of weather events:

- Different types of drought
- Frost
- Heat stress etc.

Different crops, different countries

Assess the sensitivity of the results to the estimation method

References

- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
- Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. (2011) Doubly robust estimation of causal effects. Am J Epidemiol. 173(7):761-7. doi: 10.1093/aje/kwq439.
- Lee BK, Lessler J, Stuart EA. (2010) Improving propensity score weighting using machine learning. Stat Med. 29(3):337-46. doi: 10.1002/sim.3782.
- Zhong Y, Kennedy EH, Bodnar LM, Naimi AI. (2021). AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects. Am J Epidemiol. 190(12):2690-2699. doi: 10.1093/aje/kwab207