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What is an individual causal effect?

A: Treatment variable (either O or 1, here)
Y: Outcome for an individual

The treatment A has a causal effect on an individual’s outcome Y if

Yazl # Ya:O

for the individual



What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)
Y: Rat alive, Rat dead (O, 1)

The glyphosate has a causal effect on the rat survival if

Yazl # Ya:O

for the individual rat



What is an individual causal effect?

A: Exposition to glyphosate (0 or 1)
Y: Rat alive, Rat dead (O, 1)

The glyphosate has a causal effect on the rat survival if

Yazl # Ya:O

for the individual rat

This is the same rat!



What is an average causal effect?

There is an average causal effect in the population if:

B[Y*='] # B[y~



Causal effect of adverse weather conditions
on crop production

* A: Adverse weather condition at a certain period (0 or 1)
 Y:Cropyieldin asite-year, e.g., wheat field in Saclay in 2023

The weather condition A has a causal effect on an individual’s outcome Y if
Yazl # Ya:O

for the crop field considered



Causal effect of adverse weather conditions
on crop production

* A: Adverse weather condition at a certain period (0 or 1)
 Y:Cropyieldin asite-year
* Population: All wheat site-years in France

There is an average causal effect of the adverse weather condition on wheat
yield in France if:

B[Ye='] # B[y~



Causation vs. Association

Population of interest

Treated <> Untreated

RN

Causation Association
E[Y+] E[Y4 = 1] E[Y]4 = 0]

E[Y=] # E[Y*~] E[Y|A=1] # E[Y|A=0]



Risk of confounding

A=Drought A=No drought

L=Irrigated [L=Rainfec




Risk of confounding

A=Drought A=No drought

L=Irrigated |L=Rainfec

E(Y|Irrigated, Drought)

E(Y|Rained, No drought) =



Risk of confounding

A=Drought A=No drought

L=Irrigated |L=Rainfec

Bias
E(Y|Irrigated, Drought) — E(Y|Rained, No drought) = —ap



Risk of confounding

A=Water excess A=No water excess

L=Low temp.

E(Y|Low temp, Water excess)

E(Y|Avg temp, No water excess
= lo — ay — B (Y|Avg temp )

= U



Risk of confounding

A=Water excess A=No water excess

L=Low temp.

Bias

E(Y|Low temp, Water excess) — E(Y|Avg temp, No water excess) = —aW



Randomized controlled trial (RCT)




Randomized controlled trial (RCT)
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Randomized controlled trial (RCT)

0

8,211,1,6,9 — Y

1

3,4,7,12,10,5 — Y

E(Y; — Yo) = —ap



Why RCT is not always possible

* Not always possible to apply the treatment A
 Not always easy to randomize

* Costly

* Limited sample sizes









Yield anomaly (t ha-1)
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Confounding factors

A > Y

Adverse weather event Crop yield in a site-year

(Drought, Frost, Excess of water...)



Inverse probability weighting

E[Y] = E [I(A:a)Y]

flAIL]

»mean of Y, reweighted by the IP weight W4 = 1/f [A|L]

in individuals with treatment value A = a.



Inverse probability weighting

' [(Drought)Y |

E[yProught] —
[ | P(Drought|L)

Y=Crop yield in a site-year
A=Drought
L=Confounding factors (Irrigated/Rainfed, Temperature, Soil depth...)



Implementation

n

P I(Drought)Y 12 Y; I(A; = Drought)
P(A; = Drought|L;)

P(Drought|L) N n 4
1=

Develop a model P(4; = Drought|L;) : « Propensity score »

* Logistic regression (glm)
 Machine learning for classification (random forest, gradient boosting etc.)



Implementation

Run the model over all data and compute:

P I(Drought)Y P I(No drought)Y
P(Drought|L) 1 — P(Drought|L)



Implementation

Run the model over all data and compute:

P I(Drought)Y P I(No drought)Y
P(Drought|L) 1 — P(Drought|L)

The probabilities of drought and no drought should be non-zero!



Variants: Matching

* Compute P(Drought|L) for all data

* Create pairs of values of Y based on the calculated probabilities
»Select an observed value Y, with drought and P(Drought|L)=P,
»Select an observed value Y, , without drought and P(Drought|L)=P, 4
» Match the two values (Y,, Y, ;) if P;and P, are « similar »

» Repeat the procedure for all the observed Y

* Compute the mean difference of Y based on the pairs

 Test the statistical significance of the difference



Variants: Matching

* Compute P(Drought|L) for all data

* Create pairs of values of Y based on the calculated probabilities
»Select an observed value Y, with drought and P(Drought|L)=P,
»Select an observed value Y, , without drought and P(Drought|L)=P, 4
» Match the two values (Y,, Y,,) if P,and P, are « similar »

» Repeat the procedure for all the observed Y \
Many different ways

* Compute the mean difference of Y based on the pairs to define « similar » |

Cf next talk
 Test the statistical significance of the difference



Standardization

E[Ye]= Y E[Y|[A=a,L =10 Pr[L =]



Standardization

E[YProught] = E[Y|Drought, Irrigated]P(Irrigated)
+ E|Y|Drought, Rainfed]P(Rainfed)

A=Drought
L=Irrigated/Rainfed



Implementation

E[YyProught] — E[Y|Drought,L = Irrigated] P(L = Irrigated)
+ E[Y|Drought,L = Rainfed] P(L = Rainfed)

Step 1: Develop a model g(Drought, No drought, L) computing E[Y|Drought, L]
* Linear regression
* GAM
 Machine learning (regression) etc.

Step 2: Run the model two times over all data, with Drought and No droughts, successively

Step 3: Compute the average difference

n n
1 1
Ez g(Drought, L;) — EE g(No drought, L;)



Double robust L
7\

A > Y

* Combine Inverse probability weighting and standardization

* Rely on two models

P(AIL) = f(L)
E[Y|A L] = g(4,L)

 Unbiased if one of the two models is unbiased



Double robust

A
f(Li)

EIYe=1=231, [9(A = 1,1 + 2 (Y — g(A = 1,1)]



Double robust

Aj
f(Li)

EIYe=1=231, [9(A = 1,1 + 2 (Y — g(A = 1,1)]

Predicted effect of A=1 onY Error of prediction of Y

Probability of A=1 estimated
as a function of L



Double robust

=1,L1))]

ElY*=1=13L, |94 = s

E[ve=)==3, (g4 = 0,L) + ==L (¥, - g(4 = 0,L))|]

f( l)



__-_

0 (no drought) Irrigated Temperature=15
0 (no drought) Rainfed Temperature=21 7.2
1 (drought) Irrigated Temperature=11 8.5
0 (no drought) Irrigated Temperature=24 7.9
1 (drought) Rainfed Temperature=14 7.1
0 (no drought) Rainfed Temperature=19 6.8
\ J
|

P(A|L) = f(L)

gim(A~L1+L2+...+LK, family=binomial)
randomForest(A~L1+L2+...+LK)



__-_

0 (no drought) Irrigated Temperature=15
0 (no drought) Rainfed Temperature=21 7.2
1 (drought) Irrigated Temperature=11 8.5
0 (no drought) Irrigated Temperature=24 7.9
1 (drought) Rainfed Temperature=14 7.1
0 (no drought) Rainfed Temperature=19 6.8
\
|

E[Y|A, L] =g(4,L)

Im(Y~L1+L2+...+LK)
randomForest(Y~L1+L2+...+LK)



__I-_-

0 (no drought) Irrigated Temperature=15 9.2 0.25
0 (no drought) Rainfed Temperature=21 7.2 7.9 0.87
1 (drought) Irrigated Temperature=11 8.5 8.6 0.45
0 (no drought) Irrigated Temperature=24 7.9 7.1 0.11
1 (drought) Rainfed Temperature=14 7.1 6.9 0.88

0 (no drought) Rainfed Temperature=19 6.8 7.2 0.34



IllllllﬂllllﬂlHIIIIIIIIIIEIIIIIII

0 (no drought) Irrigated Temperature=15 9.2 0.25
0 (no drought) Rainfed Temperature=21 7.2 7.9 0.87
1 (drought) Irrigated Temperature=11 8.5 8.6 0.45
0 (no drought) Irrigated Temperature=24 7.9 7.1 0.11
1 (drought) Rainfed Temperature=14 7.1 6.9 0.88
0 (no drought) Rainfed Temperature=19 6.8 7.2 0.34
|
E[ye=1]=1y" |g(4 = =1,1))]
E[r®=0]=2%" |g(4 = 0,1, Y, — g(4=0,L))]
[ye=0)=—3%7, |g( )+1 f(L)( g( D)
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Estimated effect of drought=-0.27 t ha1 (0.03)
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Summary

* Method 1: Inverse probability weighting

» Require one model: the propensity score (probability of the treatment
conditionally to the confounding factors)

»Variants: matching
e Method 2: Standardization

» Require one model predicting the outcome as a function of the treatment and the
confounding factors

* Method 3: Double robust estimator

»Require two models but... more robust



Perspectives (2024)

Implement several variants of this approach to assess the effect of
different types of weather events:

- Different types of drought

- Frost

- Heat stress etc.

Different crops, different countries

Assess the sensitivity of the results to the estimation method
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