Skip to main content
Log in

Estimating the incidence of Septoria leaf blotch in wheat crops from in-season field measurements

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Septoria leaf blotch is a widespread disease caused by the fungus Zymoseptoria tritici (formely known as Mycosphaerella graminicola). It causes yield losses in winter wheat crops (Triticum aestivum L.) in many European countries. In this study, we aimed to develop statistical models for estimating regional and site-specific incidence of Septoria leaf blotch from in-season field measurements. Four generalised linear models and four generalised linear mixed-effect models were fitted to six years of data collected from a major wheat-producing area of France, using frequentist and Bayesian methods. We compared the abilities of these models to predict S. tritici incidence over different time scales. We found that the best models were those that included site-year effects and disease risk ratings based on sowing dates and cultivar resistance levels. These models can be used to estimate the dynamics of disease incidence from observations collected in regional surveys and, as such, could help regional extension services evaluate current disease incidence at the regional scale. The proposed models could also be adjusted to make use of site-specific in-season field measurements for the estimation of site-specific disease incidence. With the current survey design, site-specific estimates are more accurate than regional estimates after mid-May. Such estimates could be used to help farmers adapt their control strategies locally during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. EEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Ansar, M., Cheema, N. M., & Leitch, M. H. (2010). Effect of agronomic practices on the development of Septoria leaf blotch and its subsequent effect on growth and yield components of wheat. Pakistan Journal of Botany, 43(3), 2125–2138.

    Google Scholar 

  • Arvalis - Institut du végétal (2015). Actualités phytosanitaires. Choisir & Décider - Synthèse nationale, 2014-2015, 6–17.

    Google Scholar 

  • Audsley, E., Milne, A., & Paveley, N. (2005). A foliar disease model for use in wheat disease management decision support systems. Annals of Applied Biology, 147(2), 161–172. doi:10.1111/j.1744-7348.2005.00023.x.

    Article  Google Scholar 

  • Barbetti, M. J., Banga, S. S., & Salisbury, P. A. (2012). Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios – Case study with oilseed Brassicas. Field Crops Research, 127, 225–240. doi:10.1016/j.fcr.2011.11.021.

    Article  Google Scholar 

  • CRAC (2014). Bulletin de santé du végétal – Céréales à paille – 27/05/2014- Région Centre. Chambre Régionale d’Agriculture du Centre. Available on: http://www.arvalis-infos.fr/bulletin-de-sante-du-vegetal-centre-@/_plugins/WMS_BO_Gallery/page/getElementStream.html;jsessionid=436323B6B08C39D12CE95370BD046712.tomcat2?id=26368&prop=file. Accessed 25 January 2016

  • CRACA (2012). Bulletin de santé du végétal – Grandes cultures – Champagne-Ardenne - 27/05/2014. Chambre Régionale d’Agriculture de Champagne-Ardenne. Available on: http://www.champagrica.fr/fileadmin/documents_craca/BSV/BSV_2012/14_-_BSV_Grandes_cultures_S21.pdf. Accessed 25 January 2016.

  • Decarrier, A., & Gagliardi, E. (2015). Stratégies régionales fongicides. Normandie, Picardie, Nord-Pas-de-Calais, Champagne-Ardenne. Contre les résistances à la septoriose. Perspectives agricoles, (418), 17.

  • DRAAF-CA. (2014). Agreste Champagne-Ardenne 2013: une campagne en demi-teinte. Direction régionale de l’alimentation, de l’Agriculture et de la forêt de Champagne-Ardenne, S. régionale de l’information statistique et économique.

  • El Chartouni, L., Tisserant, B., Ali, S., Duyme, F., Durand, R., Halama, P., et al. (2012). Evolution of Mycosphaerella graminicola at the wheat leaf and field levels. Phytopathologia Mediterranea, 51(2), 332–339.

    Google Scholar 

  • El Jarroudi, M., Delfosse, P., Maraite, H., Hoffmann, L., & Tychon, B. (2009). Assessing the accuracy of simulation model for Septoria leaf blotch disease progress on winter wheat. Plant Disease, 93(10), 983–992.

    Article  Google Scholar 

  • Eyal, Z., Sharen, A. L., Prescott, J. M. & van Ginkel, M. (1987). The Septoria diseases of wheat: concepts and methods of disease management. Mexico, D.F.: CIMMYT. 46p. ISBN: 968–6127-06-2

  • Fones, H. & Gurr, S. (2015). The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genetics and Biology, 79, 3–7. doi:10.1016/j.fgb.2015.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–511.

    Article  Google Scholar 

  • GEVES. (2014). Catalogue Officiel. http://cat.geves.info/Page/ListeNationale. Accessed 25 January 2015.

  • Gouache, D. & Couleaud, G. (2010). Fongicides céréales. Positionnement des traitements ciblant la septoriose: un enjeu de 5q/ha. Perspectives agricoles, (365), 42–45.

  • Gouache, D., Bensadoun, A., Brun, F., Pagé, C., Makowski, D., & Wallach, D. (2012). Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease model uncertainty. Agricultural and Forest Meteorology, 170, 242–252. doi:10.1016/j.agrformet.2012.04.019.

    Article  Google Scholar 

  • Hardwick, N. V., Jones, D. R., & Slough, J. E. (2001). Factors affecting diseases of winter wheat in England and Wales, 1989–98. Plant Pathology, 50(4), 453–462.

    Article  CAS  Google Scholar 

  • Henze, M., Beyer, M., Klink, H., & Verreet, J.-A. (2007). Characterizing meteorological scenarios favorable for Septoria tritici infections in wheat and estimation of latent periods. Plant Disease, 91(11), 1445–1449.

    Article  Google Scholar 

  • Jørgensen, L. N., Hovmøller, M. S., Hansen, J. G., Lassen, P., Clark, B., Bayles, R., et al. (2014). IPM strategies and their dilemmas including an introduction to www.eurowheat.org. Journal of Integrative Agriculture, 13(2), 265–281. doi:10.1016/S2095-3119(13)60646-2.

    Article  Google Scholar 

  • Juroszek, P. & Von Tiedemann, A. (2015). Linking plant disease models to climate change scenarios to project future risks of crop diseases: a review. Journal Plant Disease Protect, 122, 3–15.

    Article  Google Scholar 

  • King, J. E., Cook, R. J., & Melville, S. C. (1983). A review of Septoria diseases of wheat and barley. Annals of Applied Biology, 103, Issue 2, 345–373.

  • Kim, K.-H., Cho, J., Lee, Y. H., & Lee, W.-S. (2015). Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agricultural and Forest Meteorology, 203, 191–207. doi:10.1016/j.agrformet.2015.01.011.

    Article  Google Scholar 

  • Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10(4), 325–337.

    Article  Google Scholar 

  • MAAF. (2008). Plan Ecophyto 2018. Ministère Français en charge de l’agriculture.

    Google Scholar 

  • MAAF. (2015). Plan Ecophyto II. Ministère Français en charge de l’agriculture. Available on: http://agriculture.gouv.fr/sites/minagri/files/151022_ecophyto.pdf Accessed 20 January 2016.

  • Makowski, D., Vicent, A., Pautasso, M., Stancanelli, G., & Rafoss, T. (2014). Comparison of statistical models in a meta-analysis of fungicide treatments for the control of citrus black spot caused by. Phyllosticta citricarpa. European Journal of Plant Pathology, 139(1), 79–94. doi:10.1007/s10658-013-0365-6.

    Article  CAS  Google Scholar 

  • Mila, A. L. & Carriquiry, A. L. (2004). Bayesian analysis in plant pathology. Phytopathology, 94(9), 1027–1030.

    Article  CAS  PubMed  Google Scholar 

  • Mila, A. L. & Ngugi, H. K. (2011). A Bayesian approach to meta-analysis of plant pathology studies. Phytopathology, 101(1), 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, J.-M. & Maraite, H. (1999). Integration of knowledge on wheat phenology and Septoria tritici epidemiology into a disease risk simulation model validated in belgium. Aspects of Applied Biology, 55, 1–6.

    Google Scholar 

  • Moreau, J.-M. & Maraite, H. (2000). Development of an interactive decision-support system on a Web site for control of Mycosphaerella graminicola in winter wheat. EPPO Bulletin, 30(1), 161–163.

    Article  Google Scholar 

  • Parsons, D. & Te Beest, D. (2004). Optimising fungicide applications on Winter Wheat using genetic algorithms. Biosystems Engineering, 88(4), 401–410. doi:10.1016/j.biosystemseng.2004.04.012.

    Article  Google Scholar 

  • Penaud, A., Printz, P., Maumené, C., Couleaud, G., Walker, A. S., Gouache, D., et al. (2011). Des outils de raisonnement pour limiter et rendre durable la lutte chimique contre les bioagresseurs en grandes cultures. Innovations Agronomiques, 17, 1–14.

    Google Scholar 

  • Pietravalle, S., Shaw, M. W., Parker, S. R., & Van Den Bosch, F. (2003). Modeling of relationships between weather and Septoria tritici epidemics on winter wheat: a critical approach. Phytopathology, 93(10), 1329–1339.

    Article  CAS  PubMed  Google Scholar 

  • Polley, R. W. & Thomas, M. R. (1991). Surveys of diseases of winter wheat in England and Wales, 1976–1988. Annals of Applied Biology, 119(1), 1–20.

    Article  Google Scholar 

  • Ponomarenko, A., Goodwin, S. B., & Kema, G. H. J. (2011). Septoria tritici blotch (STB) of wheat. Plant Health Instructor. doi:10.1094/PHI-I-2011-0407-01.

    Google Scholar 

  • R Development Core Team, (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.r-project.org.

  • Regnault-Roger, C. (2005). Enjeux phytosanitaires pour l’agriculture et l’environnement (1013p). Londre-Paris-New-York: TEC et DOC.

  • Regnault-Roger, C. (2014). Produits de Protection des Plantes. Innovation et sécurité pour une agriculture durable (353p). Paris: TEC et DOC.

  • Robert, C., Fournier, C., Andrieu, B., & Ney, B. (2008). Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant–pathogen interactions linked to canopy architecture. Functional Plant Biology, 35(10), 997. doi:10.1071/FP08066.

    Article  Google Scholar 

  • Rossi, V., Caffi, T., & Salinari, F. (2012). Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathologia Mediterranea, 51(3), 457–479.

    Google Scholar 

  • Savary, S., Stetkiewicz, S., Brun, F., & Willocquet, L. (2015). Modelling and mapping potential epidemics of wheat diseases—examples on leaf rust and Septoria tritici blotch using EPIWHEAT. European Journal of Plant Pathology, 142(4), 771–790. doi:10.1007/s10658-015-0650-7.

    Article  CAS  Google Scholar 

  • Sim IV, T., Willis, W. G., & Eversmeyer, M. G. (1998). Kansas Plant Disease Survey. Plant Disease, 72(10), 832–836.

    Article  Google Scholar 

  • Simonneau, D., Chollet, D., Bouveris, N., & Brochard, M. (2010). Surveillance Vigicultures® adopté par 17 régions. Perspectives agricoles, 372, 52–54.

    Google Scholar 

  • Simonneau, D., Taupin, P., Couleaud Gilles, Maufras, J.-Y., & Robin, N. (2011). Vigicultures® Mode opératoire observation Blés hiver. 25p

  • Simonneau, D., Couleaud, G., Flodrops, Y., Bodilis, A.M., Duyme, F. (2009). Vigicultures® Moyens de validation des observations. 5p (unpublished report)

  • Sine, M., Morin, E., Simonneau, D., Brochard, M., De Cosnac, G., & Escriou, H. (2010). VIGICULTURES–An early warning system for crop pest management. In Scientific and Technical Information and Rural Development IAALD Xlllth World Congress, Montpellier (pp. 26–29).

  • Small, I. M., Joseph, L., & Fry, W. E. (2015). Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Computers and Electronics in Agriculture, 115, 57–65. doi:10.1016/j.compag.2015.05.010.

    Article  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 64(4), 583–639.

    Article  Google Scholar 

  • Suffert, F., Sache, I., & Lannou, C. (2011). Early stages of Septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum: Primary inoculum of Mycosphaerella graminicola. Plant Pathology, 60(2), 166–177. doi:10.1111/j.1365-3059.2010.02369.x.

    Article  Google Scholar 

  • Tabib Ghaffary, S. M., Robert, O., Laurent, V., Lonnet, P., Margalé, E., van der Lee, T. A. J., et al. (2011). Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theoretical and Applied Genetics, 123(5), 741–754. doi:10.1007/s00122-011-1623-7.

    Article  PubMed Central  Google Scholar 

  • Te Beest, D. E., Shaw, M. W., Pietravalle, S., & van den Bosch, F. (2009). A predictive model for early-warning of Septoria leaf blotch on winter wheat. European Journal of Plant Pathology, 124(3), 413–425. doi:10.1007/s10658-009-9428-0.

    Article  Google Scholar 

  • Van Maanen, A. & Xu, X.-M. (2003). Modelling plant disease epidemics. European Journal of Plant Pathology, 109(7), 669–682.

    Article  Google Scholar 

  • Verreet, J. A., Klink, H., & Hoffmann, G. M. (2000). Regional Monitoring for Disease Prediction and Optimization of Plant Protection Measures: The IPM Wheat Model. Plant Disease, 84(8), 816–826.

    Article  Google Scholar 

  • Wallach, D., Makowski, D., Jones, J. W., & Brun, F. (2014). Working with dynamic crop models. Methods, tools, and examples for agriculture and environment (Second ed. ). Elsevier.

  • Zadoks, J. C., Chang, T. T., Konzak, C. F., & others. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421.

Download references

Acknowledgments

This research was supported by SynOEM - Mieux profiter de la synergie entre réseaux dobservations, expertise et modélisation pour lélaboration du Bulletin de Santé du Végétal (http://www.modelia.org/moodle/course/view.php?id=55), funded by the French National Agency for Water and Aquatic Environments (ONEMA) under the Ecophyto Plan supported by the French Ministry of Agriculture. This work was cofunded by a PhD grant from the French Association for Technical Research (ANRT).

We are grateful to E. Gourdain, D. Simonneau, V. Bochu, A. Decarrier, D. Gouache, G. Hugerot, and J.Veslot for their comments on our results and to Alex Edelman & Associates for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Michel.

Appendix

Appendix

Appendix A. Correspondence between final leaf numbers and observed leaf numbers as a function of wheat stage on the observation date (Simonneau et al. 2009)

Observed leaf number

Zadoks stage (Zadoks et al. 1974) on the observation date

Corresponding final leaf number

1

Z31

4

1

Z32

3

1

Z37

2

1

Z39

1

2

Z31

5

2

Z32

4

2

Z37

3

2

Z39

2

3

Z31

6

3

Z32

5

3

Z37

4

3

Z39

3

Appendix B. R code used to fit a frequentist model including site-year random effects and a covariable describing the level of SLB risk (model 4F)

This model was fitted with the glmer() function (available with the lme4 package version 1.1–6). The SLB incidence data were included in a data.frame object called TAB_glob. The vector feuille_m includes the numbers of infected leaves in samples of 20 leaves. The vector feuille_s is the number of healthy leaves (feuille_m + feuille_s = 20). The variable time_b represents time in days (noted t in “Materials and methods”), risque is a categorical variable indicating levels of SLB risk (high, medium, low) and id_plot is the site-year index variable.

In the glmer() function, the terms on the left of the sign “~” represent the data (cbind(feuille_m,feuille_s)) and the terms on the right describe the fixed effect (time_b + risque) and the random effect ((1 + time_b|id_plot)).

The number of infected leaves was assumed to follow a binomial probability distribution specified as family = binomial.

Model < − glmer(cbind(feuille_m, feuille_s) ~ time_b + risque + (1 + time_b | id_plot), family = binomial, data = TAB_glob)

Appendix C. WinBUGS script used to fit a Bayesian model including site-year random effects and a covariable describing the level of SLB risk (model 4B)

Ndata is the total number of SLB incidence data, Nsiteyear is the number of site-years, y[i] is the ith incidence, theta[] is a vector of random site-year effects, rm[] and rf[] are dummy variables indicating medium and high risk levels respectively, p[] is the probability that one leaf is infected, alpha0, alpha1, betarm and betarf are fixed effects, and lambda is a variable used to ensure that disease incidence is an increasing function of time (time[]).

figure a

Appendix D. Estimated parameter values and 95 % confidence intervals (in brackets) obtained for the frequentist models 1F-3F, for the three leaves considered (leaves 1 to 3).

Parameters

Leaf 1

Model 1F

Model 2F

Model 3F

α 0

−7.223 (−7.403; −7.063)

−15.854 (−17.188; −14.52)

−8.083 (−8.282; −7.884)

α 1

0.110 (0.107; 0.113)

0.239 (0.214; 0.264)

0.112 (0.109; 0.116)

g H

  

1.217 (1.108; 1.327)

g M

  

0.616 (0.511; 0.721)

 

Leaf 2

 

Model 1F

Model 2F

Model 3F

α 0

−6.083 (−6.201; −5.965)

−11.052 (−11.73; −10.373)

−6.551 (−6.685; −6.416)

α 1

0.094 (0.092; 0.096)

0.169 (0.155; 0.182)

0.096 (0.094; 0.099)

g H

  

0.824 (0.747; 0.902)

g M

  

0.203 (0.131; 0.276)

 

Leaf 3

 

Model 1F

Model 2F

Model 3F

α 0

−5.121 (−5.212; −5.029)

−8.925 (−9.466; −8.383)

−5.495 (−5.598; −5.391)

α 1

0.075 (0.074; 0.077)

0.133 (0.123; 0.144)

0.076 (0.075; 0.078)

g H

  

0.675 (0.613; 0.738)

g M

  

0.250 (0.193; 0.308)

Appendix E. Estimated posterior means of the parameters and 95 % credibility intervals (in brackets) obtained for Bayesian models 1B-3B, for the three leaves considered (leaves 1 to 3).

Parameters

Leaf 1

Model 1B

Model 2B

Model 3B

α 0

-7.235 (-7.408; -7.067)

−15.931 (−16.960; −14.86)

-8.085 (-8.286; -7.894)

α 1

0.110 (0.107; 0.113)

0.243 (0.223; 0.263)

0.112 (0.109; 0.115)

g H

  

1.219 (1.111; 1.329)

g M

  

0.618 (0.515; 0.722)

 

Leaf 2

  
 

Model 1B

Model 2B

Model 3B

α 0

-6.084 (-6.203; -5.968)

−11.106 (−11.89; −10.43)

-6.552 (-6.688; -6.418)

α 1

0.094 (0.092; 0.096)

0.17 (0.158; 0.184)

0.096 (0.094; 0.098)

g H

  

0.825 (0.749; 0.903)

g M

  

0.204 (0.132; 0.276)

 

Leaf 3

 

Model 1B

Model 2B

Model 3B

α 0

−5.121 (-5.212; -5.030)

−8.788 (−9.479; −8.196)

-5.495 (-5.599; -5.393)

α 1

0.075 (0.074; 0.077)

0.131 (0.119; 0.143)

0.076 (0.075; 0.078)

g H

  

0.676 (0.614; 0.738)

g M

  

0.251 (0.194; 0.301)

Appendix F. Median regional disease incidence (%) estimated for leaf 2 from 2009 to 2015. The medians were calculated across the site-specific disease incidence dynamics estimated with model 4F fitted to 4617 SLB data collected from 2009 to 2015 in the Centre region. Estimates obtained in 2015 (brown line) were derived from data collected before June 10th and extracted from the Vigiculture database. Light brown circles indicate observed data collected in the Centre region in 2015. Circle size is proportional to the number of data.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, L., Brun, F., Piraux, F. et al. Estimating the incidence of Septoria leaf blotch in wheat crops from in-season field measurements. Eur J Plant Pathol 146, 17–35 (2016). https://doi.org/10.1007/s10658-016-0887-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0887-9

Keywords

Navigation