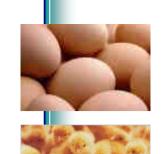


> Elaboration d'un modèle de transfert du sol vers l'œuf de poule

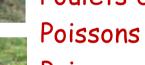
(1) Nancy-Université, INRA, USC340 Animal et Fonctionnalités des Produits Animaux, 2 avenue de la Forêt de Haye B.P. 172, F-54505 Vandœuvre- lès-Nancy


(2) ITAVI, UMT Bird, INRA, UR83 Recherches Avicoles, BP 1, F-37380 Nouzilly

(3) AgroParisTech, INRA, UMR 791 Modélisation Systémique Appliquée aux Ruminants 16 rue Claude Bernard, F-75005 Paris

Avec l'appui de l'URA (Yves NYS) et du PEAT (Nadine SELLIER)

RMT Modélisation 22 Novembre 2011


INTRODUCTION

Un contexte de renforcement de la sécurité alimentaire

> Préoccupation actuelle

Poulets contaminés en dioxines - Belgique 1999

Poissons du Rhône contaminés en PCB - France 2005

Poissons et lait de vache contaminés en dioxines - France 2007

Lait de bufflonne contaminé en dioxines - Italie 2009

Les Polluants Organiques Persistants (POP)

Bioaccumulation

- capacité à être métabolisé
- lipophilicité
 - → accumulation dans les tissus gras (œuf : jaune d'œuf)

Toxicité

Transport sur de longues distances

Certaines molécules peu/pas étudiées Manque de données quant à leur transfert

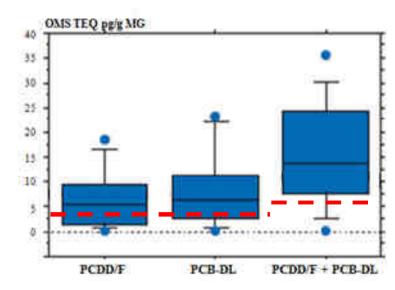
Liste des POP

Convention de Stockholm, Protocole d'Aarhus

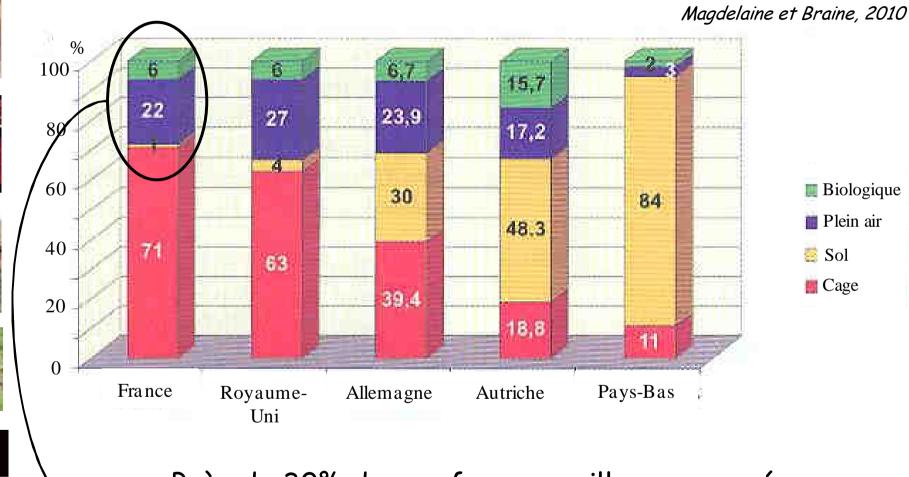
2001		- 1.		
2001	2009	En discussion		
Pesticides Pesticides Pesticides				
Aldrine	Chlordecone	Endosulfan (2011)		
Chlordane	lpha-hexachlorocyclohexane			
DDT	β -hexachlorocyclohexane			
Dieldrine	Lindane (γ-HCH)			
Endrine	Pentachlorobenzene			
Heptachlore				
Hexachlorobenzene				
Mirex				
Toxaphene				
Produits industriels				
Polychlorobiphenyls (PCB)	Hexabromobiphenyl			
Hexachlorobenzene	hexa et hepta bromodiphenyl ether	Hexabromocyclododecane (HBCD)		
	Pentachlorobenzene	Short-chained chlorinated paraffins		
	Perfluorooctane sulfonic acid			
	Tetra et penta bromodiphenyl ether			
Co-produits				
Hexachlorobenzene	lpha-hexachlorocyclohexane			
Dioxines (PCDD)	β -hexachlorocyclohexane			
Furanes (PCDF)	Pentachlorobenzene			
PCB				
HAP				

Systèmes plein air : systèmes ouverts dépendants de la qualité de leur environnement

Teneur en PCDD/F (pg OMS TEQ.g-1 MG) d'œufs de poules


	Claustration	Plein air
Pays-Bas	1,0 - 2,0	0,4 8,1
Belgique	1	1,0 10
Allemagne	0,5 - 2,3	0,4 - 11,4
Irlande	0,1 - 0,6	0,5 - 2,7
Suisse	1,3	2,9 19

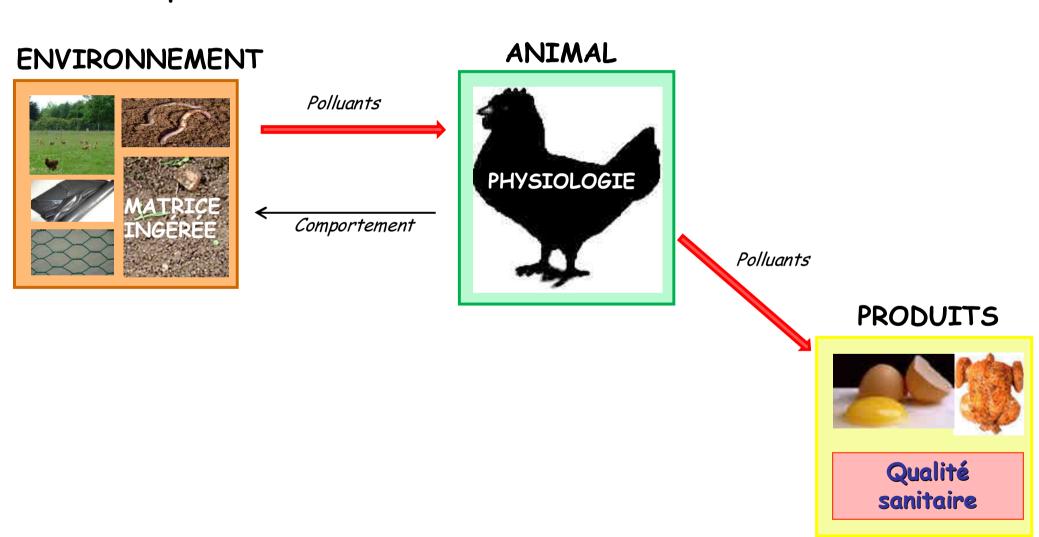
Seuil réglementaire 3 pg OMS TEQ.g⁻¹ MG RÈGLEMENT (CE) N° 1881/2006


D'après Fürst *et al.* (1993); Schüler *et al.* (1997); Kijlstra *et al.* (2004), Pussemier *et al.* (2004); FSAI (2004).

Elevages familiaux français

→ Plus grande variabilité dans les élevages plein air

Près de 30% des œufs en coquille consommés proviennent d'élevage avec parcours


Elevages Bio et plein air, amenés à se développer d'ici 2012

Sécuriser ces systèmes = enjeu

Sécuriser les systèmes d'élevage

→ le transfert au sein de la poule

ENTREE de polluants

Sécuriser les systèmes d'élevage

→ Question :

Attentes de la filière et de l'administration

- > Comment prévenir la contamination des œufs?
- > Comment réagir face aux crises sanitaires ?
 - →évaluation du temps de décontamination (conformité /règlementation) gestion de crise

Questions scientifiques

➤ Déterminants de la concentration de POP dans les œufs ?

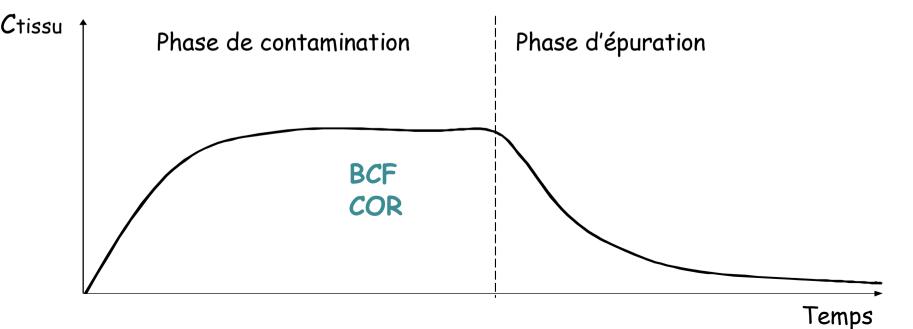
Facteurs de variation:

- liés à la molécule]
- liés à animal

au cours du temps

Moyens disponibles

BCF (Facteur de bioconcentration) COR (Taux de transfert)



→ Comparaison inter-molécule

Sécuriser les systèmes d'élevage

→ Moyens :

- De représenter le transfert au cours de l'exposition et de la vie de l'animal
- →Un modèle dynamique à l'échelle de la poule, capable de :
- représenter la réponse de l'animal à une exposition (niveau, durée, matrice ingérée ...)

étapes du transfert de POP (Absorption, Distribution, Métabolisme, Excrétion)

la molécule (lipophilicité, métabolisation)

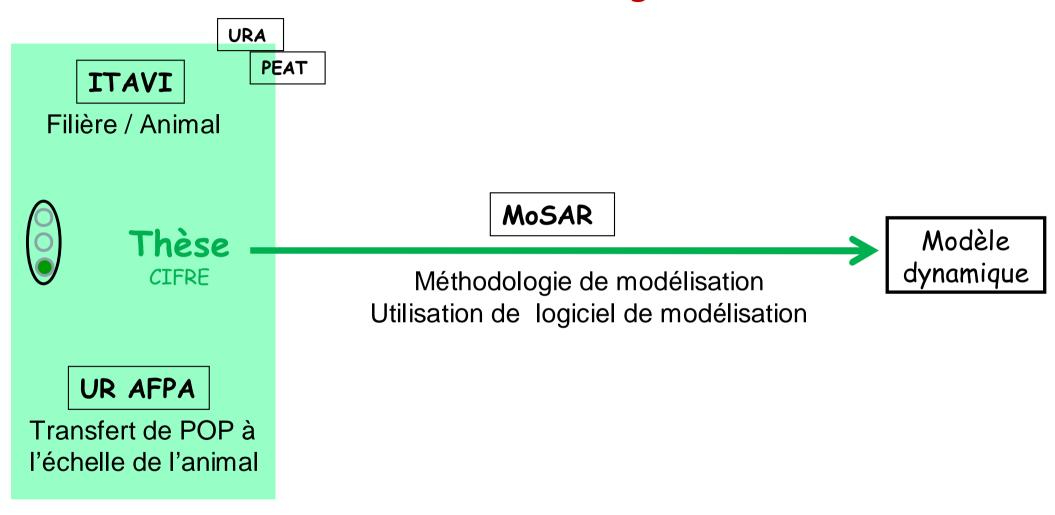
l'animal (ponte, engraissement)

temps (vie de l'animal)

Sécuriser les systèmes d'élevage

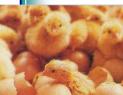
→ Compétences requises:

Filière/ Animal


Méthodologie de modélisation Utilisation de logiciel de modélisation Modèle dynamique

Transfert de POP à l'échelle de l'animal

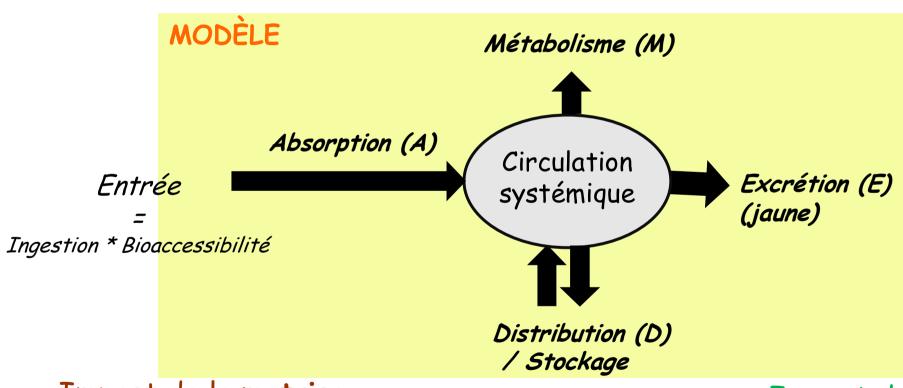
> Organisation du travail entre les partenaires?


Sécuriser les systèmes d'élevage

→ Partenaires et organisation :

> Complémentarité des compétences de chacun

Travail de modélisation


→ Eléments nécessaires...

Facteurs de variation Variable d'entrée : matrice ingérée

> Paramètres physiologiques Paramètres propres à chaque **molécule**

>étapes de transfert à l'échelle de l'animal

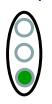
Impact des caractéristiques de la molécule

Impact de la matrice ingérée

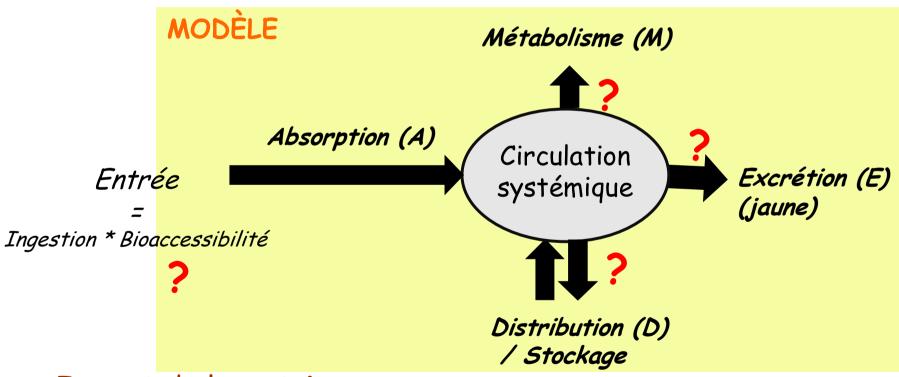
Impact des caractéristiques physiologiques

Travail de modélisation

→ Eléments nécessaires...


> facteurs de variation Variable d'entrée : matrice ingérée

> Paramètres physiologiques Paramètres propres à chaque **molécule**


- > étapes de transfert à l'échelle de l'animal
- jeux de données
 calibrer,
 ajuster,
 valider ... le modèle

Impact des caractéristiques de la molécule

Impact de la matrice ingérée

Impact des caractéristiques physiologiques

Principe du modèle

Représenter

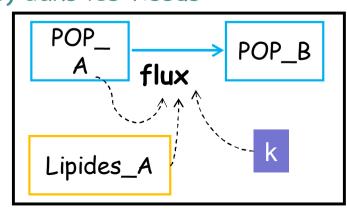
> Physiologie

Modèle mathématique (ModelMaker 4.0, Modelkinetix, Oxford, UK)

> 2 « sous-modèles »

POP

Physiologie
(ponte, engraissement)


compartiments: quantités (POP, lipides) dans les tissus

Flux (POP): dépendant de quantité de POP quantité de lipides

paramètre k (propre à la molécule)

-----> qui agit sur...

Principe du modèle

Calibration

> sous-modèle physiologique

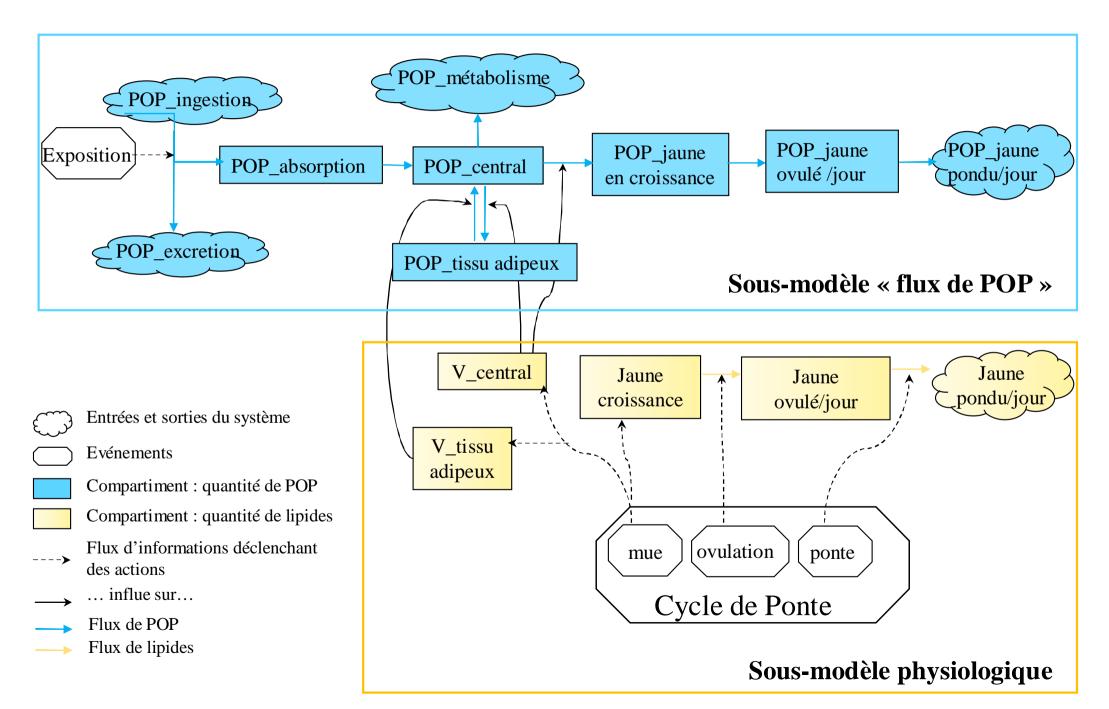
<u>Ajustement</u>

> sous-modèle transfert de POP

Validation

Difficile:

manque de données


- cinétique de molécules

- contamination avec variation de l'état physiologique

Structure du modèle

Le modèle : une aide à la gestion du risque

Mise à l'épreuve sur l'exemple du site contaminé de St Cyprien

Gestion de crise : Cas de Saint Cyprien

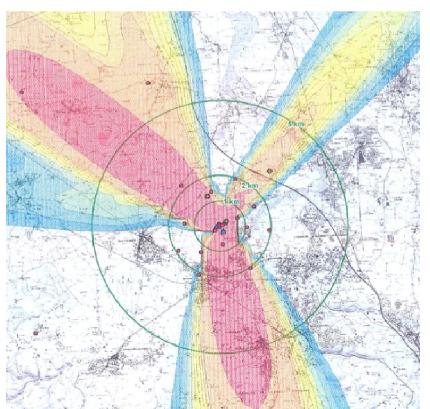
Incendie d'une installation de recyclage de palettes de bois

Emission de fumées pendant plusieurs semaines

⇒ Contamination des sols agricoles

· Dioxines, furanes, HAP

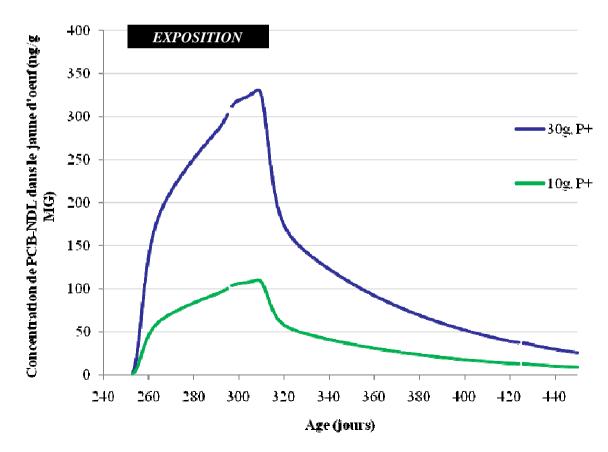
· PCB DL et NDL



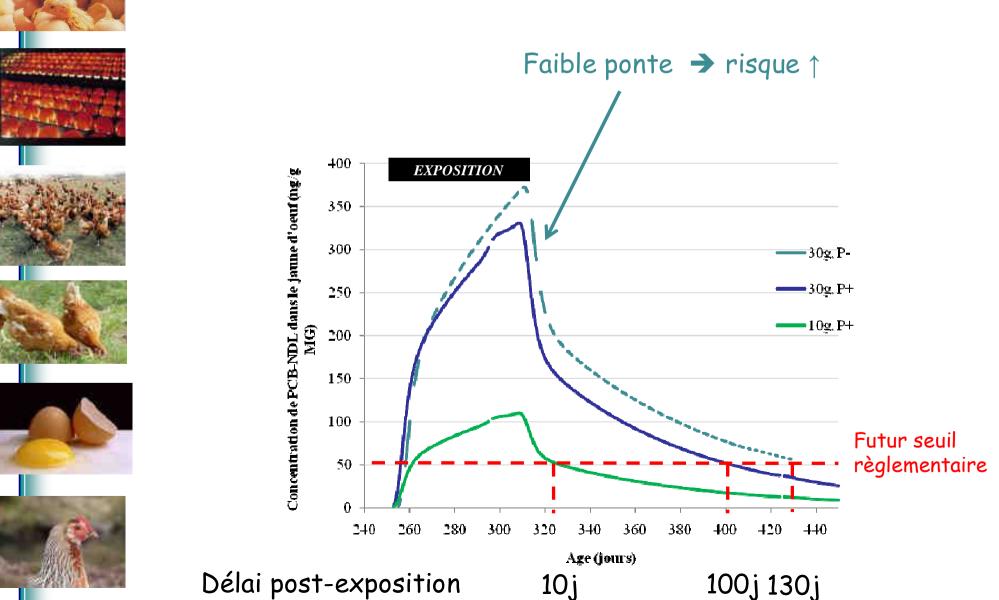
> Etude de cas :



Elevage sur sol contaminé Temps de décontamination



Impact de la quantité ingérée?


- sol contaminé en PCB-NDL (150 ng.g-1)
- contamination de 36 à 44ième semaine
- bonne performance de ponte, engraissement moyen
 - ingestion de 10g de sol /j
 - ingestion de 30g de sol/j

Impact des performances de ponte?

Perspectives...

FACTEURS de VARIATION du TRANSFERT et REPRÉSENTATION à l'échelle de l'ANIMAL

- valider les résultats obtenus par simulations (variations physiologiques)
- aller vers un modèle + mécaniste : étude des liaisons « POP-transporteurs »
 - → Vers un modèle générique

Perspectives...

FACTEURS de VARIATION du TRANSFERT et REPRÉSENTATION à l'échelle de l'ANIMAL

Changement d'échelle : LE TROUPEAU

 Variations inter-individuelles à l'échelle d'un troupeau ingestion (comportement exploratoire)

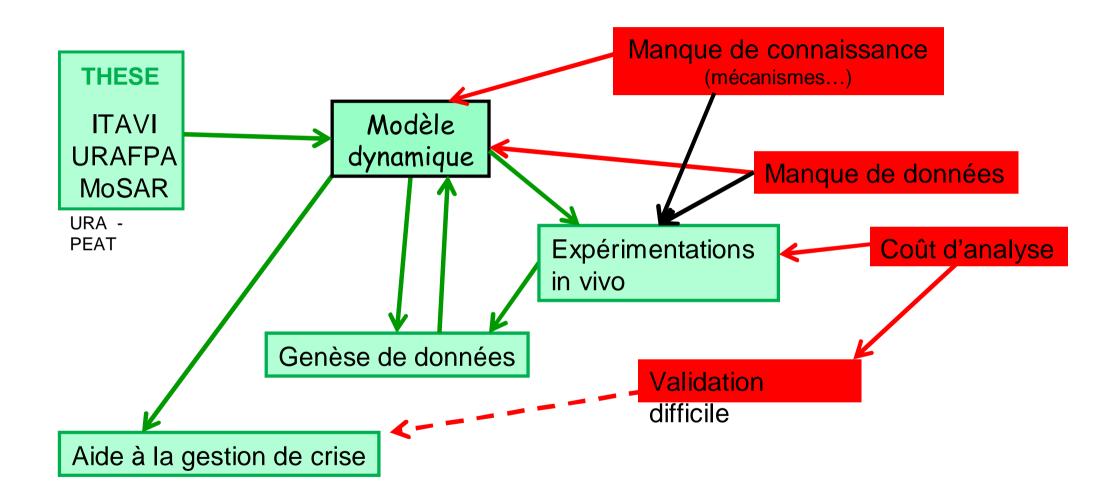
ponte

engraissement

→ Représenter la contamination d'un troupeau (/plan surveillance)

Resumé: facteurs de réussites et verrous

- apport « technique d'élevage »


- genèse de données

Domaine	Facteurs de réussite	Verrous identifiés		
Méthodologique				
- données physiologiques		Peu de données récentes, correspondant aux poules d'élevage actuel		
- données de contamination	Mise en place d'expérimentations in vivo	Peu de données Validation impossible par absence de données Coût des analyses de contaminants		
- apport de connaissances « devenir des POP à l'échelle de l'animal »	Expérimentations + simulations	Certains mécanismes du transfert restent non connus (→ non modélisés)		
- application du modèle – simulation de gestion de crise	Premiers résultats en dynamique, seul modèle existant	Modèle non validé		
Collaborations				
- apport méthodologique de modélisation	UMR MoSAR – UR AFPA	Temps		
- apport connaissance physiologique	ITAVI – UR AFPA - URA			

ITAVI – UR AFPA

ITAVI- UR AFPA- PEAT

Resumé:

Merci de votre attention

