Integrating pests into crop models: a modelling framework

Marcello Donatelli, Simone Bregaglio

Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Italy
The analysis of the impacts of climate change on plant diseases started in the 90’ (Pautasso et al., 2012).

Many authors state that the assessment of host-pathogen interactions requires a case by case evaluation (Coakley et al., 1995).

Pautasso et al., 2012
Content of papers

Re-elaborated from Chakraborty (2013)
Main open issues from literature

“Findings on climate change influence on plant pathogens are often inconsistent and context dependent. Knowledge of pathogens affecting agricultural crops and natural plant communities remains fragmented along disciplinary lines.”

<table>
<thead>
<tr>
<th>Climate signature</th>
<th>Pathogen biology, ecology & epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce uncertainty</td>
<td>• Management to target pathogen vulnerability</td>
</tr>
<tr>
<td>• Improve models</td>
<td>• Maintain food security</td>
</tr>
<tr>
<td>• Justify research investments</td>
<td>• No multifactorial study</td>
</tr>
<tr>
<td>• Very few studies</td>
<td>• No data of extreme weather impact</td>
</tr>
<tr>
<td>• Data sources from long-term experiments are ignored</td>
<td>• Knowledge of biology and life cycle is fragmented</td>
</tr>
<tr>
<td>• No use of historical data to predict future trends</td>
<td></td>
</tr>
</tbody>
</table>

Relevance

Limitation
The effect of changing atmospheric composition and climate on individual pathosystems can be positive, negative or neutral.

- infection events
- no variations
+ infection events

Magarey et al.’ model of potential infection, 2005
Temperature responses

Daily Linear (cutoff 32°C) vs Hourly Non Linear

Difference (degree-days)
- < -50
- -50 - -10
- -10 - 10
- 10 - 50
- 50 - 100
- 100 - 150
- > 150

© European Union, 2012. Source: Joint Research Centre
An integrated (integrable) system

In practice, it may be necessary to expand models to include more components, identify those components that are the most important, and synthesize such models to include the optimal level of complexity for research prioritization. Garrett et al., Plant Pathology (2011) 60, 15–30

...linking of pathogen dynamics, crop growth and climate models is essential in predicting disease risks under climate change. Pangga et al., Plant Pathology (2011) 60, 70–81

- The target is set as using a modelling framework, possibly further stressing on:
 - Extensibility
 - Reusability of modules
 - Libraries of known crop/diseases approaches
 - Transparency

- Building a framework matching those requirements (and others) has been technologically at reach since many years!
Right answers for wrong reasons

• Even limiting to crop models, data for thorough model testing have always been a limiting factor.

• For applications which do not allow using statistical models, we use process-based models which require rich reference dataset, to avoid merely fitting data – setting parameter values which provide an acceptable matching to reference data, but which are almost meaningless.

• Including in the picture disease models and their impact increases the requirements for valid dataset, hence making the problem even bigger.

• Collecting data to develop models for generic reuse – which is not fully equivalent to collect data for context specific applications, remains a limit difficult to overcome but a prerequisite for improving model predictive capabilities.
The Diseases software package

A MODELLING FRAMEWORK
The simulation of crop performance under climate change scenarios includes, as one of the assumptions, the likely lack of adaptation of crops to the new environmental conditions.

Climate impacting on crops is no longer “known variability”, but it might include extremes and new patterns of temperatures and rainfall, which increase the risk of relying on observations to estimate future trends of crop responses.

Process-based crop models need to be verified in terms of assumptions accepted in the formalization of processes, often implemented as simplifications of responses.

Plant diseases models are no different; moreover, site and weather-specific interactions with crops may substantially change under new scenarios.
Introduction: approaches

- Simplifying the impact of diseases on crop performance in unknown weather conditions should not be done as reduction on yield *ex-post* because:
 - There is no knowledge of what the impact (of what disease?) could be under “unknown” patterns of weather variables;
 - Ex-post corrections introduce an error in estimating use of resources during growth, which would impact substantially on yield in conditions, for example, of water scarcity;
 - The development of agro-management plans, direct to control diseases, and indirect to supply crop inputs, are affected, making the development of adaptation techniques biased.

- The level of empiricism in building modelling solutions is a limiting factor for future, unknown conditions: there is no data to build and corroborate the empiricism.
Level of empiricism and prediction

redrawn from Acock and Acock, 1991
Aim of the framework

- To develop capabilities of simulating diseases and their interaction with crops under climate change scenarios:
 - The framework had to be based on process-based simulation, less risky under unknown conditions once system analysis evaluates modelling approaches in the target context;
 - It had to be extensible to allow for alternate and new approaches to simulate diseases and crop-disease interactions;
 - The simulation of agro-management had to be included to allow developing plans for technical adaptation;
 - The system had to be open, to allow plant pathology modelers to extend and using the framework for specific cases, hence contributing via a building block approach.
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
The **Diseases** components are four software extensible libraries implementing models to simulate the time evolution of a generic air-borne fungal disease epidemic:

- **InoculumPressure**, to estimate the time of the disease onset and to provide models to derive initial disease severity.
- **DiseaseProgress**, to simulate the disease progress rate of a monocyclic/polycyclic fungal disease as a function of the agro-meteorological conditions and of the plant-pathogen interactions.
- **ImpactsOnPlants**, to simulate the impact of a diseases epidemic on plant processes and organs via the coupling to crop models.
- **AgroManagementDiseases**, to simulate the reduction of the disease progress rate as a function of a chemical application, and the decay of the effectiveness of the active principle.
The whole picture: model libraries

Weather libraries
- AirTemperature, EvapoTranspiration, LeafWetness,
- SolarRadiation, Rainfall, Wind
- Climatic indices
- Weather Generators (ClimGen, CLIMAK)

Abiotic stresses
- Heat damage, Rice cold shocks, Lodging

Biotic stresses
- Generic air-borne diseases simulator (Diseases, Magarey),
- Generic soil-borne diseases growth (SBD),
- CornBorer simulator (MYMICS)

Plant libraries
- Generic crop simulators (Wofost, CropSyst, STICS)
- Generic tree simulator (Tree)
- Rice (WARM)
- Sugarcane (CaneGro)
- Grain quality (AgPro-Q)

Soil libraries
- Soil water runoff and erosion (CN, Eurosem),
- Soil water redistribution (Cascading, FiniteDifferences)
- Soil surface and profile temperature,
- Soil nitrogen (SoilN)
- Pedotransfer functions (SoilPAR)

Agricultural management
- Rule-based modelling (AgroManagement)

Chemicals
- Chemicals dynamics (AgroChemicals)
The modelling of density, dispersion and type of primary inoculum is crucial for the simulation of a plant disease epidemic (Andrade-Piedra et al., 2005).

The timing of symptoms onset and the initial disease severity vary across environments and growing seasons, and depend on the agro-environmental and management factors during the period when the crop is not in the field (Gupta, 2004).

Simulating spores dispersal accounting for the above is a demanding effort, given that many pathogens differentiate

- sexual spores to survive during fallow periods;
- asexual spores to repeat secondary cycles during the cropping season, with different thermal and wetness requirements (Rapilly, 1991).

The **InoculumPressure** module
The module allows estimating the time of the disease onset and to provide models to derive initial disease severity.

The module implements models to simulate:

- the time of disease onset based on hydro-thermal time (Rossi et al., 2008);
- the infection and sporulation efficiencies of primary inoculum (Magarey et al., 2005; Launay et al., 2014)
- spores dispersal as driven by wind speed or precipitation. (Waggoner and Horsfall, 1969; Aylor, 1982)

Models can be added to simulate inoculum survival during fallow periods (as well as alternate options to estimate initial disease severity).
Timing of the disease onset

- Hydro-thermal time is accumulated hourly considering threshold temperatures for inoculum development and a threshold of hourly air relative humidity limiting accumulation.

Blast on rice

Brown rust on winter wheat
Wind and rain spores dispersal

- These functions can be parameterized by setting few parameters with a clear biophysical meaning.
- Parameters can be found in literature or measured in dedicated experiments.
The InoculumPressure module

To the DiseaseProgress module

Crop libraries
The DiseaseProgress module

- The approach used for impact simulations on the host tissue is based on the development of Susceptible-Exposed-Infected-Removed (SEIR) models.

- The plant host tissue which can become infected is consequently classified into non-overlapping categories such as healthy, latently infected, visible but not sporulating, infectious and sporulating and removed (Jeger, 2000).

- The parameters in SEIR models usually drive functions of exogenous variables such as air temperature, leaf wetness, wind speed, rain and air relative humidity (Ferrandino, 1993).

- The level of host resistance and the variable susceptibility of host tissue during the crop growth are important factors to be considered in modelling (Shtienberg, 2000), since they affect the rate of disease development during the cropping season.
The *DiseaseProgress* module

- The host tissue is divided into compartments according to disease development:

```
Healthy → Latent → Visible → Infectious → Removed
```

- Latency
- Incubation

- Secondary cycles
- Sporulation
- Dispersal & catch

- Factors influencing disease development:
 - Temperature
 - Relative humidity
 - Cultivar resistance
 - Rainfall
 - Wind speed
 - Leaf wetness

ENDURE Summer school, 2016
marcello.donatelli@crea.gov.it
Manca animazione, va rifatta

Simone; 15/02/2015
The temperature response function is parameterized according to the thermal requirements of different pathogens.

The model considers the minimum and the optimal duration of the wetness period.

The number of hours needed to complete an infection event (Magarey et al. 2005) is used to derive daily infection efficiency.
Sporulation efficiency is computed basing on temperature and vapour pressure deficit or relative humidity (as a threshold)

The same temperature response function as for infection can be parameterized for the sporulation process.

The DiseaseProgress module

- Minimum VPD for sporulation
- Maximum VPD for sporulation

![Graph showing sporulation efficiency vs. VPD](image-url)
The **DiseaseProgress** module

- The duration of the latency, incubation and infectiousness periods is simulated as dependent by hourly temperature.
- Parameters needed are cardinal temperatures for the periods and duration (days) of the period at optimal temperatures.

![Incubation - Latency](image1)

![Infectiousness](image2)
The *DiseasesProgres* module

From *InoculumPressure*

- Incubation parameters
- Incubation
- Latency parameters
- Latency
- Infectiousness parameters
- Infectiousness
- Host Tissue
- Host Tissue Letent
- R Infection
- R Latency
- R Infectiousness
- Host Tissue Visible
- Infection
- Dispersal
- Sporulation
- GLAI
- Host Tissue Old
- Host Tissue Infectious
- Infection resistance
- RH or WD
- T
- VPD or RH
- Sporulation resistance
- Dispersal parameters
- Sporulation parameters

To *ImpactOnPlants* and *Agromanag*

ENDURE Summer school, 2016

marcello.donatelli@crea.gov.it
Models were parameterized to reproduce two pathosystems:

- Two crop models, WARM and WOFOST
- Outputs of sample simulations to show model responses

Development: host tissue

- **Blast on rice** (crop model WARM)
 - Disease severity
 - HT infectious

- **Brown rust on winter wheat** (crop model WOFOST)
 - Disease severity
 - HT latent
 - HT senescent
 - HT vulnerable
The assessment of crop yield losses is indicated as the reason of existence of plant pathology (Fargette et al., 1988; Savary and Cooke, 2006).

The reproduction of the damage of the disease on crop organs by linking the outputs of disease models to crop simulators (Pinnschmidt et al., 1995) allows a more realistic simulation of the crop-pathogen interactions (Johnson and Teng, 1990) than reducing directly states of either yield or biomass.

The impacts of the disease on plant physiological processes (Boote et al., 1983) is taken into account via coupling points linking disease estimated rates to plant either states or rates.
The mechanisms of damage caused by fungal foliar pathogens can be grouped into two broad categories: the impacts on radiation interception and the impacts on the photosynthetic activity (Johnson, 1987).

The reduction of the photosynthetic rate as a function of disease severity can be described using the concept of “virtual lesion”, (Bastiaans 1991), which corresponds to the visible lesion and surrounding symptomless tissue, plus any non-colonized region in which photosynthetic metabolism is affected.

Another coupling point between crop models and disease models was developed to take into account the enhancement of the maintenance respiration as a function of the disease severity (Bingham and Topp, 2009).
The *ImpactOnPlants* module

- Responses of the models to simulate the decrease of radiation use efficiency and/or the leaf CO2 assimilation as a function of disease severity and virtual-visual lesion ratio (β).
- Responses of the models to simulate the enhancement of maintenance respiration as a function of disease severity and of the ratio between the respiration rate of a lesion and that of an identical area of healthy leaf tissue (α).
The *ImpactOnPlants* module

From the *DiseaseProgress* module

Crop libraries
Leaf area index is dynamically reduced according to disease severity increase

Impact on aboveground and yield.

Blast on rice (crop model WARM)

Brown rust on winter wheat (crop model WOFOST)
The effects of chemicals on foliar diseases development can be grouped into two main categories (Milne et al., 2007):
- protectant fungicides, which inhibit spore germination thus reducing the infection frequency (Manners, 1993; Russell 2005)
- eradicant fungicides, which slow down the growth of mycelium and consequently the sporulation rate (Vyas, 1984; Bailey, 2000).

Agro-management is currently implemented, like in all agro-management implementations in the BioMA platform, as:
- Rules, to trigger agro-management events, based on the state of the system;
- Model to estimate degradation of chemicals;
- Impact models, which affect the states of the pathogen.

Both rules and impact models are extensible.
The AgromanagDisease module

To the module DiseaseProgress
The degradation of the fungicide after chemical treatment is simulated as a function of:

- temperature (Patterson and Nokes, 2000)
- rainfall (Arneson et al., 1978; two models)
Disease severity is reduced after chemical treatment

The effectiveness of the chemical treatment is reduced after application.

Blast on rice (crop model WARM)

Brown rust on winter wheat (crop model WOFOST)

Development: agromanagement

- Disease severity without fungicide
- Disease severity after application

Low sensitivity to rain

High sensitivity to rain

Disease onset

Fungicide treatment

ENDURE Summer school, 2016
marcello.donatelli@crea.gov.it
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
The software implementation

- The software implementation is based on four modules, each composed of two discrete units.
- Each module is implemented separating the description of the domain from the models; the library of models can be independently either extended or fully replaced, and also the library including the description of the domain can be extended.
- Models are implemented at fine granularity, referring to the description of the domain for inputs and outputs, whereas each model includes the definition of its own parameters.
- Models are meant to be composed, also to models from other components as crop libraries, to build modelling solutions which are also reusable in other platforms which are compatible at binary level (the platform is based on Microsoft .NET)
From knowledge to software units

Criteria to define the granularity

Is the process specific for one pathosystem?

YES

Is the process driven by a single input set?

YES

Simple strategies

Pathosystem specific
 e.g., InoculumStartBlast

NO

Pathosystem generic
 e.g., Latency

Which are the input sets?

SET 1

Modelling approach 1
 e.g., InfectionWD

SET 2

Modelling approach 2
 e.g., InfectionRH

SET n

Modelling approach n

Aggregation levels

Context strategies

Pathosystem specific
 e.g., InoculumBlastC

Composite strategies

Pathosystem generic
 e.g., DiseaseDevelopmentC

ENDURE Summer school, 2016 marcello.donatelli@crea.gov.it
The software implementation

Vulnerable host tissue

The percentage of host tissue which can be affected by new infections (HT_{vul}, %) is computed on a daily basis as a function of the total host tissue affected by the epidemic and of the ratio between green and total leaf area index as:

$$HT_{vul} = \begin{cases} \frac{GLAI}{LAI} - \left[\frac{(HT_{lat} + HT_{vis} + HT_{inf_max} + HT_{sen})}{HT_{max}} \right] & \text{if } \frac{HT_{lat} + HT_{vis} + HT_{inf_max} + HT_{sen}}{HT_{max}} < \frac{GLAI}{LAI} \\ 0 & \text{elsewhere} \end{cases}$$

Where $GLAI$ is the green leaf area index $(m^2 \cdot m^{-2})$, LAI is total leaf area index $(m^2 \cdot m^{-2})$, HT_{max} is the maximum host tissue which can be affected by the disease (i.e., maximum disease severity, 0-1), HT_{lat} is the latent host tissue (0-1), HT_{vis} is the visible host tissue (0-1), HT_{inf} is the infectious host tissue (0-1) and HT_{sen} is the senescent host tissue (0-1).

HT_{vul} starts to decrease starting from the day of the disease onset.

When the percentage of HT_{vul} is > 0, the new percentage of host tissue which can become infected ($HT_{inf,pov}$, 0-1)

where Sp_{eff} is the daily sporulation efficiency (0-1), C_{rain} and C_{wind} are the efficiency of spore catch by rain or wind. Inf_{spores} is the efficiency of the production of airborne spores by the infectious tissue are computed as:

$$Inf_{spores} = HT_{spor} \cdot Sp_{eff} \cdot \max(D_{rain}, D_{wind})$$
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
A sensitivity analysis was run on rice for China (model WARM + Diseases simulating rice blast), and on wheat for Europe (model WOFOST + Diseases simulating brown rust).

The library SimLab was used for the purpose. A first screening was run using the Morris' method to identify the most sensitive parameters, then the Sobols' method was run on those parameters to refine the analysis.

The maps show the most important parameter influencing the variability of disease severity at maturity for each grid cell.

Application: sensitivity analysis

Sobol’ 1st ranked parameters - *Puccinia recondita* on wheat

- Tmin for incubation is limiting

Sobol’ 1st ranked parameters - *Magnaporthe oryzae* on rice

- Tmin for incubation is limiting
- Latency duration is limiting

Colder climate

warmer climate

Latency duration is limiting

ENDURE Summer school, 2016
marcello.donatelli@crea.gov.it
Application: disease severity

- The model outputs were compared to visual assessments of disease severity.
- Two Italian rice varieties medium and low resistance to blast disease.
- Earlier disease onset in 2014 according to measures.
- Lower impact of the disease in 2013 cropping season in Collobiano than in the other site × year combinations.
Application: rice blast

- Experimental field trials (paddy rice) carried out since 1996.
- Three sites in Northern Italy, around 40 rice varieties with different blast resistance levels.
- Visual assessments of the disease impact (i.e. leaf and panicle blast) on rice crop, ranked in a scale ranging from 0 (< 5%) to 5 (> 60%).

Leaf and panicle blast symptoms
Application: rice blast

- The modelling solution (WARM+Diseases) obtained similar performances for the calibration and evaluation datasets.
- Effective in reproducing the marked year-to-year fluctuations in the three sites.
Conclusions

- The framework proposed and the associated software infrastructure allows for a building-block process in which alternate and new models can be added to either extend or improve the simulation of diseases, and the impact on crops.

- Plant pathology modellers can use known crops models to develop specific cases, and hopefully crop modellers will be able to rely on a library of models for diseases simulation developed and tuned by specialists.

- The cooperation between plant pathology modellers and crop modellers is key to further develop and evaluate modelling capabilities, including the implementation of pathosystems of different diseases impacting simultaneously on crops.
Conclusions (2)

- The software architecture of this framework is not merely an application of technology, in fact, it directly impacts on knowledge sharing and building.

- As for other applications of the software architecture used, this framework does not present “the model”; instead it provides a way to build, compare, and use operationally modelling options.
The software development kit

http://goo.gl/mkatY9