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Objectives of the presentation

1 Show the advantage of using ensemble forecasts in irrigation
Decision Support Tools (DSTs) in comparison with other used
approach

2 Show how can we enhance ensemble predictions ?
(Post-processing)

3 Discuss other possible sources of prediction uncertainties and
quantifying it (sensitivity analysis)
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Context: Irrigation management using decision
support tools (DSTs)

Crop water stress DSTs are real-time models that compute a water stress
index of the crop using weather data.

Water balance model

Weather data
inputs

Decision on 
irrigation date

Water stress index
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State of the art in the usage of irrigation DSTs

Without uncertainty information: based on deterministic weather forecasts
(i.e single value weather forecast)
With uncertainty information: using ensemble of historical weather data
(accounts for uncertainty but has drawbacks).
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Objective 1: Advantage of using ensemble
predictions

Introduce the use of ensemble prevision (IFS-EPS) in irrigation DSTs and compare its perfromance to
ensemble of historical observations (EHO)
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Figure 1: Caption
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Materials

Numerical weather predictions used is IFS-EPS (zone: World, validity
period: 15 days, size: 51 members, horizontal resolution: 18Km,
initialization: 00:00 UTC)

Ensemble of historical weather observation used: 12 years of prior
observations for the desired period

WaLIS water balance model (developed by Inrae and IFV) for vines irrigation

Summer period (June to September), years 2018-2019-2020-2021

10 sites in the south of France
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Materials: Weather Data Base
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Same for EHO but with 12 member ensemble consisted of the observation of
the 12 previous years
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Results: comparison approach EHO-M vs approach
IFS-EPS-M (particular case)
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How to evaluate the performance of an ensemble prevision ?

Many characteristics: Accuracy, reliability, sharpness etc ..
Scores: many scores ! In this study we use the continuous ranked probability score (CRPS):

CRPS =

∫ +∞

−∞
(Ffcst(x) − Fobs(x))

2 dx

Continuous ranked probability score (CRPS) measures the 

difference between the forecast and observed CDFs

Continuous ranked probability 
score (CRPS)

( )∫
∞

∞−

−= dx)x(P)x(PCRPS obsfcst

2

• Same as Brier score integrated over all thresholds 

• On continuous scale: does not need reduction of ensemble 

forecasts to discrete probabilities of binary or categorical 

events (for multi-category use Ranked Probability Score)

• Same as Mean Absolute Error for deterministic forecasts

• Has dimensions of observed variable

• Perfect score: 0

• Rewards small spread (sharpness) if the forecast is accurate

• Skill score wrt climatology:
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N.B: In our case the obs is the stress index computed by running the DST using the observation of the meteo

variables.
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Results: comparison approach EHO-M vs approach
IFS-EPS-M (Generalization)

Conclusion (objective 1): The use of ensemble prevision in irrigation DSTs has better

performance in comparison with the use of historical weather observations.
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Ensemble prediction are not perfect and need
sometimes post-processing

Existence of systematic bias error in the prediction sometimes

Dispersion error in the ensemble sometimes

Statistical post-processing methods to address these issues
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Objective 2: Enhance ensemble predictions using
Post-Processing techniques

Investigate the effect of two post-processing approaches (Approach IFS-EPS-M-PP vs Approach
IFS-EPS-PP-M).
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EMOS method for post-processing of ensemble
prevision

Let X1,X2, ...,XN be the members of the ensemble X.

Assumption on the distribution of the ensemble to post-treat (e.g normal
distribution).

Fit the parameters of predictive distribution N(a+ bX , c + dV (X )) by
minimizing the CRPS on a training data set.

Usually the training data set is a moving window consisting in T training
days before the day J of the prevision to post-treat.
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Results (Post-processing EMOS)

4 out of 10 tested sites shows improvement in CRPS after Post-Processing
Improvement becomes significant starting lead ∼ 5
Generally, no significant difference between the two post-processing
approaches

14 / 19



Results (Post-processing EMOS)

6 out of 10 tested sites: raw ensembles as good as or better than
post-processed ones
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Conclusion (objective 2)

Post-processing of ensemble water stress index could show improvement in
ensemble previsions locally in some sites.

Globally on all sites post-processing the water stress index ensemble prevision
could improve the predictions by reducing the dispersion error and the bias.

No advantage in post-processing directly the water stress index (more
computationally expensive in operational use).
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Perspectives (Objective 3):

Evaluate and compare the different sources of uncertainty (DST Parameters
vs Prior weather Observations vs Forecast).

  

Previous observation Prediction

Forecast day

DST

Parameters

Sources of uncertainty

1st of January

17 / 19



Perspectives (methods):
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Perspectives (Preliminary results using Sobol
indices):
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