

Jérôme VIBERT

Ecosystème de la prévision météo : Open Data, Web API, ...

Retour d'expérience du Ctifl

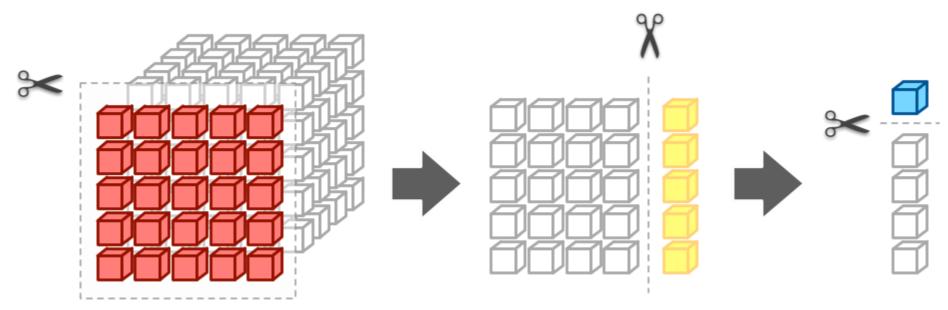
Contexte

- Ctifl : Centre Technique Interprofessionnel Fruit & Légumes
 - 300 personnes
 - Recherche appliquée et expérimentation
 - Impliqué dans les Bulletins de Santé du Végétal (BSV)
- Nos outils :
 - Base de données agro-climatiques Celsius : plus de 300 stations météo actives
 - Notre plate-forme de modèles Inoki :
 15 outils commercialisés
- Nos clients :
 - Les Chambres d'Agriculture,
 - Les FREDONS,
 - La DGAL,
 - La FNAMS,

– ...

Solutions

- Evolution des outils Celsius et Inoki
 - Validation des données agro-climatiques par les utilisateurs
 - Intégrer la prévision dans Celsius
- Conséquences :
 - Ajout d'un station virtuelle à proximité des station réelles contenant prévision + historique prévision consolidé
 - Evolution d'un système de gestion des erreurs vers un système de gestion de la qualité
- Ctifl Quelles sources de données ?


1er Essai: Données GRIB

- En 2011-2012, avec Arvalis
- Accès direct aux données brutes
 - Données GRIB
 - « GRIB (acronyme de GRId in Binary) est un format utilisé pour le stockage compact, le transport et la manipulation de données météorologiques. »
- Données ouvertes issues de fournisseurs
 « institutionnels »
 - NOAA :
 - Yr.no
- Et MétéoFrance ?
 - Les données de prévision qui nous intéresse (Arome, Antilope, Radar) ne sont pas disponibles gratuitement.

Source de données climatiques brutes

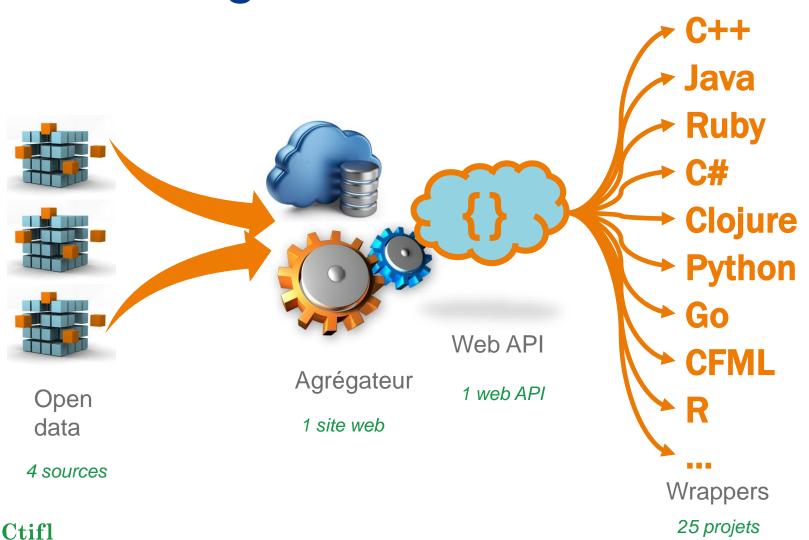
Couper en tranches puis en cubes


```
".\Exe\WGrib2\wgrib2" ".\In\gfs.%Annee%%Mois%%Jour%06.grib2" -s | findstr /G:NOAA_GFS_Chaines.txt |
".\Exe\WGrib2\wgrib2" -i ".\In\gfs.%Annee%%Mois%%Jour%06.grib2" -undefine out-box -5:10 42:51 -if ":TMP:" -rpn
"273.15:-" -fi -if ":TMAX:" -rpn "273.15:-" -fi -if ":TMIN:" -rpn "273.15:-" -fi -if ":UGRD:10 m above ground:" -
rpn "sto_1" -fi -if ":VGRD:10 m above ground:" -rpn "sto_2" -fi -if_reg 1:2 -rpn
"rcl_1:sq:rcl_2:sq:+:sqrt:clr_1:clr_2" -fi -if ":UGRD:10 m above ground:" -rpn "sto_3" -fi -if_reg 3 -rpn

Ctrl_3:atan2:180:*:pi:/:clr_3" -fi -s -set_grib_type complex1 -grib_out
"/Out\GFS\gfs.france.%Annee%%Mois%%Jour%06.grib2"
```

Et après ?

- Il faut de plus :
 - Agréger ces données en base
 - Accéder à d'autres sources
 - Mettre en place les algorithmes d'interpolation spatiale (wgrib2 insuffisant...)
- Le test a été suspendu



2ème essai: Forecast.io

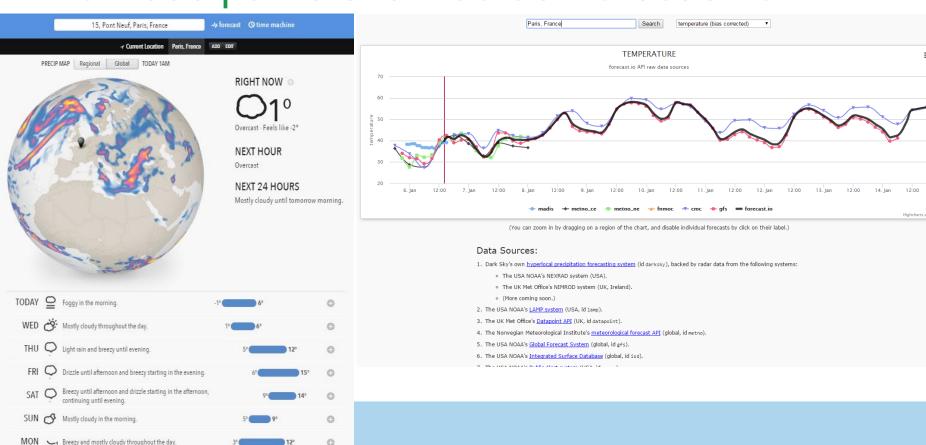
- Existe depuis plusieurs années
 - 2011 projet Kickstarter de 40 000 \$
 - DarkSky sur iPhone : Prévisions à très court terme (inférieur à l'heure) grâce aux données des radar Doppler analysées de façon statistique
 - Début 2013 : Web API
 - Site web particulièrement soigné
- Effectue le travail le plus rebutant
 - Lecture des différentes sources « Open Data »
 - Agrégation dans une seule base de données
 - Interpolation et correction des données
 - Restitution avec des bonnes performances

Organisation Forecast.io

Applications & services

Plusieurs centaines

Sites web d'agrégation

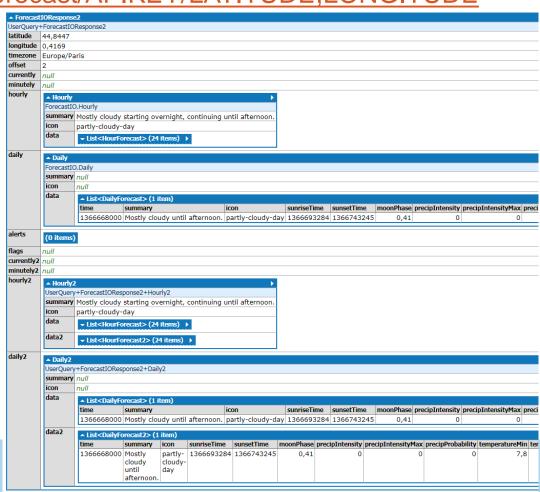

• 4 sites :

- Un site présentant une utilisation pratique des données :
 http://forecast.io/
- Des pages expliquant graphiquement d'où viennent les données et comment elles sont agrégées : http://forecast.io/raw
- Un blog pour les grandes étapes : http://blog.forecast.io/
- Un site pour l'accès à l'API et avec des explications pour les développeurs : https://developer.forecast.io/

Sites web d'agrégation

 Peu d'informations sur les technologies utilisée par le site web de Forecast.io

Réutilisation des données agrégées : la Web API

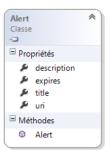

Web API Rest :

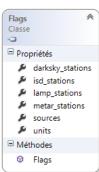
https://api.forecast.io/forecast/APIKEY/LATITUDE,LONGITUDE

Retourne du json

{"latitude":47.278,"longitude":-1.8158,"timezone":"Eur day"."precipIntensity":0,"precipProbability":0,"temper 4.28, "ozone": 320.76}, "hourly": { "summary": "Mostly cloud day", "precipIntensity":0, "precipProbability":0, "temper .19, "ozone": 316.73}, {"time": 1420538400, "summary": "Most day", "precipIntensity":0, "precipProbability":0, "temper 4.31, "ozone": 322.24}, { "time": 1420542000, "summary": "Mos day", "precipIntensity":0, "precipProbability":0, "temper .35, "ozone": 327.23}, {"time": 1420545600, "summary": "Most day", "precipIntensity":0, "precipProbability":0, "temper 4.36, "ozone": 330.96}, {"time": 1420549200, "summary": "Mos day", "precipIntensity":0, "precipProbability":0, "temper ,"ozone":332.2},{"time":1420552800,"summary":"Mostly (day", "precipIntensity": 0, "precipProbability": 0, "temper .29, "ozone": 332.17}, {"time": 1420556400, "summary": "Most day", "precipIntensity": 0, "precipProbability": 0, "temper 42, "ozone": 333.75}, {"time": 1420560000, "summary": "Most] day", "precipIntensity": 0, "precipProbability": 0, "temper 83, "ozone": 338.84}, { "time": 1420563600, "summary": "Most]

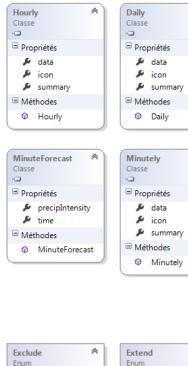
- Facile à retranscrire avec les outils informatiques =>
- C'est que font les wrappers




Accès à l'API : les Wrappers

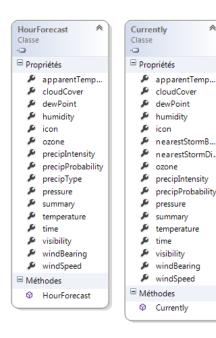
 Code généralement Open Source : Le code source est donc disponible sur

DailyForecast


- GitHub
- Codeplex
- 25 exemples disponibles
- Possibilité de « contribuer » si besoin est : Ce que nous avons fait
- Exemple des classes générée en C#

DailyForecast

hourly


.

currently

minutely hourly

alerts

flags

Unit

Enum

us

si

ca uk

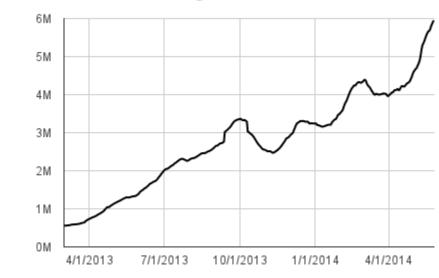
auto

.

Mise à disposition des binaires : les "packages"

- Nuget pour C#:
 https://www.nuget.org/packages/Forecast.io/
- Package pour R : <u>https://github.com/hrbrmstr/Rforecastio</u>
- Packages pour Python : https://pypi.python.org/pypi/python-forecastio/
- Clojars pour Clojure (Maven artifact) : <u>https://clojars.org/forecast-clojure</u>
- Maven artifact pour Java :
 https://github.com/dvdme/forecastio-lib-java
- ...

Avantages Forecast.io

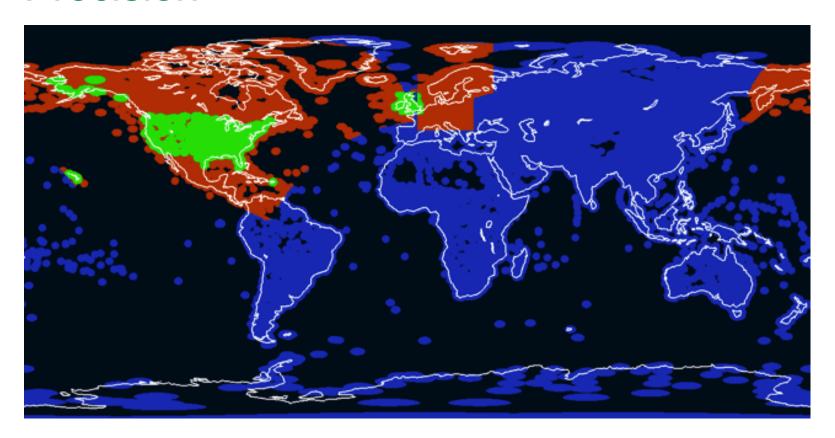

- Les conditions d'utilisation :
 - Usage commercial (ou non) autorisé
 - Le 1er millier d'appel à l'API est gratuit
 - Ensuite 1 \$ pour chaque 10 000 appels
 - Créditer l'outil : "Powered by Forecast.io"
- Les performances
- La simplicité de mise en œuvre

Avantages Forecast.io

- Des solutions techniques intéressantes :
 - Réseau de neurones pour le filtrage radar
 - Reconnaissance d'images
- Utilisation en croissance forte depuis sa

création

Date


Inconvénients Forecast.io

- En France, un tel système est encore loin de la « station météo virtuelle »
- Précision (Arvalis)
 - La précision sur la température est correcte en France
 - A revoir en ce qui concerne les précipitations
- Appliquer une correction sur nos stations
- Précision dépendante de la disponibilité locale de données « institutionnelles » ouvertes
- « Non météorologistes »

Inconvénients Forecast.io

Précision

Conclusion

- L'utilisation des données des Web API (ou web service) :
 - bien plus simple que l'utilisation des données brutes
 - évite de créer une dépendance technique à une technologie spécifique mais nécessite de se rassurer sur la continuité du service
- Le Ctifl a mis en place sa propre Web API pour l'accès aux données météo de Celsius
- La moindre disponibilité de données ouverte en prévision météo est pénalisante en France

Références

- TOP 10 WEATHER APIS: Janet Wagner, Data Journalist / Full Stack Developer, Nov. 13 2014, http://www.programmableweb.com/news/top-10-weather-apis/analysis/2014/11/13
- On Adding Translations to the Forecast API: Jay LaPorte on May 29, 2014, http://blog.forecast.io/on-adding-translations-to-the-forecast-api/
- The USA NOAA's NOAA, GRIB / GFS
 http://www.cpc.noaa.gov/products/wesley/fast_downloading_grib.html
- The US Navy's Fleet Numerical Meteorology and Oceanography Ensemble Forecast System : http://nomads.ncep.noaa.gov/txt_descriptions/FENS_doc.shtml
- The Norwegian Meteorological Institute's GRIB file forecast for Central Europe and Northern Europe : http://api.met.no/weatherapi/gribfiles/1.0/documentation
- The USA NOAA/ESRL's Meteorological Assimilation Data Ingest System : http://madis.noaa.gov/

Références (suite)

- This App Predicts the Weather Down to the Minute : http://www.inc.com/magazine/201307/eric-markowitz/this-app-predicts-the-weatherdown-to-the-minute.html
- Données des 24 radars Météo France (payant) :
 https://donneespubliques.meteofrance.fr/?fond=rubrique
 &id_rubrique=27#
- Données des 150 radars des Etats-Unis (gratuit) : http://radar.weather.gov/ridge/RadarImg/N0R/FWS/
- Données Grib Météo-France :
 - Arome (3h, 2,5 km, sur devis):
 https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=42
 - Antilope : (Précipitations seulement, 1h, 1 km)

